SpECTRE
v2025.03.17
|
Items related to solving the Extended Conformal Thin Sandwich (XCTS) decomposition of the Einstein constraint equations. More...
Namespaces | |
namespace | AnalyticData |
Analytic data for the XCTS equations, i.e. field configurations that do not solve the equations but are used as background or initial guess. | |
namespace | Solutions |
Analytic solutions of the XCTS equations. | |
namespace | Tags |
Tags related to the XCTS equations. | |
Classes | |
struct | FirstOrderSystem |
The Extended Conformal Thin Sandwich (XCTS) decomposition of the Einstein constraint equations, formulated as a set of coupled first-order partial differential equations. More... | |
struct | Fluxes |
The fluxes \(F^i\) for the first-order formulation of the XCTS equations. More... | |
struct | LinearizedSources |
The linearization of the sources \(S\) for the first-order formulation of the XCTS equations. More... | |
struct | Sources |
The sources \(S\) for the first-order formulation of the XCTS equations. More... | |
struct | SpacetimeQuantitiesComputer |
CachedTempBuffer computer class for 3+1 quantities from XCTS variables. See Xcts::SpacetimeQuantities . More... | |
Enumerations | |
enum class | Equations { Hamiltonian , HamiltonianAndLapse , HamiltonianLapseAndShift } |
Indicates a subset of the XCTS equations. More... | |
enum class | Geometry { FlatCartesian , Curved } |
Types of conformal geometries for the XCTS equations. More... | |
Functions | |
template<int ConformalMatterScale> | |
void | add_hamiltonian_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_constraint, const Scalar< DataVector > &conformal_energy_density, const Scalar< DataVector > &extrinsic_curvature_trace, const Scalar< DataVector > &conformal_factor_minus_one) |
Add the nonlinear source to the Hamiltonian constraint on a flat conformal background in Cartesian coordinates and with \(\bar{u}_{ij}=0=\beta^i\). More... | |
template<int ConformalMatterScale> | |
void | add_linearized_hamiltonian_sources (gsl::not_null< Scalar< DataVector > * > linearized_hamiltonian_constraint, const Scalar< DataVector > &conformal_energy_density, const Scalar< DataVector > &extrinsic_curvature_trace, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &conformal_factor_correction) |
The linearization of add_hamiltonian_sources | |
void | add_distortion_hamiltonian_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_constraint, const Scalar< DataVector > &longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, const Scalar< DataVector > &conformal_factor_minus_one) |
Add the "distortion" source term to the Hamiltonian constraint. More... | |
void | add_linearized_distortion_hamiltonian_sources (gsl::not_null< Scalar< DataVector > * > linearized_hamiltonian_constraint, const Scalar< DataVector > &longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &conformal_factor_correction) |
The linearization of add_distortion_hamiltonian_sources More... | |
void | add_curved_hamiltonian_or_lapse_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_or_lapse_equation, const Scalar< DataVector > &conformal_ricci_scalar, const Scalar< DataVector > &field, double add_constant=0.) |
Add the contributions from a curved background geometry to the Hamiltonian constraint or lapse equation. More... | |
template<int ConformalMatterScale> | |
void | add_lapse_sources (gsl::not_null< Scalar< DataVector > * > lapse_equation, const Scalar< DataVector > &conformal_energy_density, const Scalar< DataVector > &conformal_stress_trace, const Scalar< DataVector > &extrinsic_curvature_trace, const Scalar< DataVector > &dt_extrinsic_curvature_trace, const Scalar< DataVector > &shift_dot_deriv_extrinsic_curvature_trace, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one) |
Add the nonlinear source to the lapse equation on a flat conformal background in Cartesian coordinates and with \(\bar{u}_{ij}=0=\beta^i\). More... | |
template<int ConformalMatterScale> | |
void | add_linearized_lapse_sources (gsl::not_null< Scalar< DataVector > * > linearized_lapse_equation, const Scalar< DataVector > &conformal_energy_density, const Scalar< DataVector > &conformal_stress_trace, const Scalar< DataVector > &extrinsic_curvature_trace, const Scalar< DataVector > &dt_extrinsic_curvature_trace, const Scalar< DataVector > &shift_dot_deriv_extrinsic_curvature_trace, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one, const Scalar< DataVector > &conformal_factor_correction, const Scalar< DataVector > &lapse_times_conformal_factor_correction) |
The linearization of add_lapse_sources More... | |
void | add_distortion_hamiltonian_and_lapse_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_constraint, gsl::not_null< Scalar< DataVector > * > lapse_equation, const Scalar< DataVector > &longitudinal_shift_minus_dt_conformal_metric_square, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one) |
Add the "distortion" source term to the Hamiltonian constraint and the lapse equation. More... | |
void | add_linearized_distortion_hamiltonian_and_lapse_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_constraint, gsl::not_null< Scalar< DataVector > * > lapse_equation, const Scalar< DataVector > &longitudinal_shift_minus_dt_conformal_metric_square, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one, const Scalar< DataVector > &conformal_factor_correction, const Scalar< DataVector > &lapse_times_conformal_factor_correction) |
The linearization of add_distortion_hamiltonian_and_lapse_sources More... | |
template<int ConformalMatterScale> | |
void | add_curved_linearized_momentum_sources (gsl::not_null< Scalar< DataVector > * > linearized_hamiltonian_constraint, gsl::not_null< Scalar< DataVector > * > linearized_lapse_equation, gsl::not_null< tnsr::I< DataVector, 3 > * > linearized_momentum_constraint, const tnsr::I< DataVector, 3 > &conformal_momentum_density, const tnsr::i< DataVector, 3 > &extrinsic_curvature_trace_gradient, const tnsr::ii< DataVector, 3 > &conformal_metric, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one, const tnsr::I< DataVector, 3 > &conformal_factor_flux, const tnsr::I< DataVector, 3 > &lapse_times_conformal_factor_flux, const tnsr::II< DataVector, 3 > &longitudinal_shift_minus_dt_conformal_metric, const Scalar< DataVector > &conformal_factor_correction, const Scalar< DataVector > &lapse_times_conformal_factor_correction, const tnsr::I< DataVector, 3 > &shift_correction, const tnsr::I< DataVector, 3 > &conformal_factor_flux_correction, const tnsr::I< DataVector, 3 > &lapse_times_conformal_factor_flux_correction, const tnsr::II< DataVector, 3 > &longitudinal_shift_correction) |
The linearization of add_curved_momentum_sources | |
template<int ConformalMatterScale> | |
void | add_flat_cartesian_linearized_momentum_sources (gsl::not_null< Scalar< DataVector > * > linearized_hamiltonian_constraint, gsl::not_null< Scalar< DataVector > * > linearized_lapse_equation, gsl::not_null< tnsr::I< DataVector, 3 > * > linearized_momentum_constraint, const tnsr::I< DataVector, 3 > &conformal_momentum_density, const tnsr::i< DataVector, 3 > &extrinsic_curvature_trace_gradient, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one, const tnsr::I< DataVector, 3 > &conformal_factor_flux, const tnsr::I< DataVector, 3 > &lapse_times_conformal_factor_flux, const tnsr::II< DataVector, 3 > &longitudinal_shift_minus_dt_conformal_metric, const Scalar< DataVector > &conformal_factor_correction, const Scalar< DataVector > &lapse_times_conformal_factor_correction, const tnsr::I< DataVector, 3 > &shift_correction, const tnsr::I< DataVector, 3 > &conformal_factor_flux_correction, const tnsr::I< DataVector, 3 > &lapse_times_conformal_factor_flux_correction, const tnsr::II< DataVector, 3 > &longitudinal_shift_correction) |
The linearization of add_flat_cartesian_momentum_sources | |
template<int ConformalMatterScale> | |
void | add_curved_momentum_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_constraint, gsl::not_null< Scalar< DataVector > * > lapse_equation, gsl::not_null< tnsr::I< DataVector, 3 > * > momentum_constraint, const tnsr::I< DataVector, 3 > &conformal_momentum_density, const tnsr::i< DataVector, 3 > &extrinsic_curvature_trace_gradient, const tnsr::ii< DataVector, 3 > &conformal_metric, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::I< DataVector, 3 > &minus_div_dt_conformal_metric, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one, const tnsr::I< DataVector, 3 > &conformal_factor_flux, const tnsr::I< DataVector, 3 > &lapse_times_conformal_factor_flux, const tnsr::II< DataVector, 3 > &longitudinal_shift_minus_dt_conformal_metric) |
Add the nonlinear source to the momentum constraint and add the "distortion" source term to the Hamiltonian constraint and lapse equation. More... | |
template<int ConformalMatterScale> | |
void | add_flat_cartesian_momentum_sources (gsl::not_null< Scalar< DataVector > * > hamiltonian_constraint, gsl::not_null< Scalar< DataVector > * > lapse_equation, gsl::not_null< tnsr::I< DataVector, 3 > * > momentum_constraint, const tnsr::I< DataVector, 3 > &conformal_momentum_density, const tnsr::i< DataVector, 3 > &extrinsic_curvature_trace_gradient, const tnsr::I< DataVector, 3 > &minus_div_dt_conformal_metric, const Scalar< DataVector > &conformal_factor_minus_one, const Scalar< DataVector > &lapse_times_conformal_factor_minus_one, const tnsr::I< DataVector, 3 > &conformal_factor_flux, const tnsr::I< DataVector, 3 > &lapse_times_conformal_factor_flux, const tnsr::II< DataVector, 3 > &longitudinal_shift_minus_dt_conformal_metric) |
Add the nonlinear source to the momentum constraint and add the "distortion" source term to the Hamiltonian constraint and lapse equation. More... | |
void | adm_mass_surface_integrand (gsl::not_null< tnsr::I< DataVector, 3 > * > result, const tnsr::i< DataVector, 3 > &deriv_conformal_factor, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::Ijj< DataVector, 3 > &conformal_christoffel_second_kind, const tnsr::i< DataVector, 3 > &conformal_christoffel_contracted) |
Surface integrand for the ADM mass calculation. More... | |
tnsr::I< DataVector, 3 > | adm_mass_surface_integrand (const tnsr::i< DataVector, 3 > &deriv_conformal_factor, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::Ijj< DataVector, 3 > &conformal_christoffel_second_kind, const tnsr::i< DataVector, 3 > &conformal_christoffel_contracted) |
Return-by-value overload. | |
void | adm_mass_volume_integrand (gsl::not_null< Scalar< DataVector > * > result, const Scalar< DataVector > &conformal_factor, const Scalar< DataVector > &conformal_ricci_scalar, const Scalar< DataVector > &trace_extrinsic_curvature, const Scalar< DataVector > &longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, const Scalar< DataVector > &energy_density, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::iJK< DataVector, 3 > &deriv_inv_conformal_metric, const tnsr::Ijj< DataVector, 3 > &conformal_christoffel_second_kind, const tnsr::i< DataVector, 3 > &conformal_christoffel_contracted, const tnsr::iJkk< DataVector, 3 > &deriv_conformal_christoffel_second_kind) |
Volume integrand for the ADM mass calculation. More... | |
Scalar< DataVector > | adm_mass_volume_integrand (const Scalar< DataVector > &conformal_factor, const Scalar< DataVector > &conformal_ricci_scalar, const Scalar< DataVector > &trace_extrinsic_curvature, const Scalar< DataVector > &longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, const Scalar< DataVector > &energy_density, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::iJK< DataVector, 3 > &deriv_inv_conformal_metric, const tnsr::Ijj< DataVector, 3 > &conformal_christoffel_second_kind, const tnsr::i< DataVector, 3 > &conformal_christoffel_contracted, const tnsr::iJkk< DataVector, 3 > &deriv_conformal_christoffel_second_kind) |
Return-by-value overload. | |
void | adm_linear_momentum_surface_integrand (gsl::not_null< tnsr::II< DataVector, 3 > * > result, const Scalar< DataVector > &conformal_factor, const tnsr::II< DataVector, 3 > &inv_spatial_metric, const tnsr::II< DataVector, 3 > &inv_extrinsic_curvature, const Scalar< DataVector > &trace_extrinsic_curvature) |
Surface integrand for the ADM linear momentum calculation. More... | |
tnsr::II< DataVector, 3 > | adm_linear_momentum_surface_integrand (const Scalar< DataVector > &conformal_factor, const tnsr::II< DataVector, 3 > &inv_spatial_metric, const tnsr::II< DataVector, 3 > &inv_extrinsic_curvature, const Scalar< DataVector > &trace_extrinsic_curvature) |
Return-by-value overload. | |
void | adm_linear_momentum_volume_integrand (gsl::not_null< tnsr::I< DataVector, 3 > * > result, const tnsr::II< DataVector, 3 > &surface_integrand, const Scalar< DataVector > &conformal_factor, const tnsr::i< DataVector, 3 > &deriv_conformal_factor, const tnsr::ii< DataVector, 3 > &conformal_metric, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::Ijj< DataVector, 3 > &conformal_christoffel_second_kind, const tnsr::i< DataVector, 3 > &conformal_christoffel_contracted) |
Volume integrand for ADM linear momentum calculation defined as (see Eq. 20 in [153]): More... | |
tnsr::I< DataVector, 3 > | adm_linear_momentum_volume_integrand (const tnsr::II< DataVector, 3 > &surface_integrand, const Scalar< DataVector > &conformal_factor, const tnsr::i< DataVector, 3 > &deriv_conformal_factor, const tnsr::ii< DataVector, 3 > &conformal_metric, const tnsr::II< DataVector, 3 > &inv_conformal_metric, const tnsr::Ijj< DataVector, 3 > &conformal_christoffel_second_kind, const tnsr::i< DataVector, 3 > &conformal_christoffel_contracted) |
Return-by-value overload. | |
void | adm_angular_momentum_z_surface_integrand (gsl::not_null< tnsr::I< DataVector, 3 > * > result, const tnsr::II< DataVector, 3 > &linear_momentum_surface_integrand, const tnsr::I< DataVector, 3 > &coords) |
Surface integrand for the z-component of the ADM angular momentum. More... | |
tnsr::I< DataVector, 3 > | adm_angular_momentum_z_surface_integrand (const tnsr::II< DataVector, 3 > &linear_momentum_surface_integrand, const tnsr::I< DataVector, 3 > &coords) |
Return-by-value overload. | |
void | adm_angular_momentum_z_volume_integrand (gsl::not_null< Scalar< DataVector > * > result, const tnsr::I< DataVector, 3 > &linear_momentum_volume_integrand, const tnsr::I< DataVector, 3 > &coords) |
Volume integrand for the z-component of the ADM angular momentum. More... | |
Scalar< DataVector > | adm_angular_momentum_z_volume_integrand (const tnsr::I< DataVector, 3 > &linear_momentum_volume_integrand, const tnsr::I< DataVector, 3 > &coords) |
Return-by-value overload. | |
void | center_of_mass_surface_integrand (gsl::not_null< tnsr::I< DataVector, 3 > * > result, const Scalar< DataVector > &conformal_factor, const tnsr::I< DataVector, 3 > &coords) |
Surface integrand for the center of mass calculation. More... | |
tnsr::I< DataVector, 3 > | center_of_mass_surface_integrand (const Scalar< DataVector > &conformal_factor, const tnsr::I< DataVector, 3 > &coords) |
Return-by-value overload. | |
void | center_of_mass_volume_integrand (gsl::not_null< tnsr::I< DataVector, 3 > * > result, const Scalar< DataVector > &conformal_factor, const tnsr::i< DataVector, 3, Frame::Inertial > &deriv_conformal_factor, const tnsr::I< DataVector, 3 > &coords) |
Volume integrand for the center of mass calculation. More... | |
tnsr::I< DataVector, 3 > | center_of_mass_volume_integrand (const Scalar< DataVector > &conformal_factor, const tnsr::i< DataVector, 3, Frame::Inertial > &deriv_conformal_factor, const tnsr::I< DataVector, 3 > &coords) |
Return-by-value overload. | |
template<typename DataType > | |
void | extrinsic_curvature (const gsl::not_null< tnsr::ii< DataType, 3 > * > result, const Scalar< DataType > &conformal_factor, const Scalar< DataType > &lapse, const tnsr::ii< DataType, 3 > &conformal_metric, const tnsr::II< DataType, 3 > &longitudinal_shift_minus_dt_conformal_metric, const Scalar< DataType > &trace_extrinsic_curvature) |
Extrinsic curvature computed from the conformal decomposition used in the XCTS system. More... | |
template<typename DataType > | |
tnsr::ii< DataType, 3 > | extrinsic_curvature (const Scalar< DataType > &conformal_factor, const Scalar< DataType > &lapse, const tnsr::ii< DataType, 3 > &conformal_metric, const tnsr::II< DataType, 3 > &longitudinal_shift_minus_dt_conformal_metric, const Scalar< DataType > &trace_extrinsic_curvature) |
Return-by-value overload. | |
template<typename DataType > | |
void | longitudinal_operator (gsl::not_null< tnsr::II< DataType, 3 > * > result, const tnsr::ii< DataType, 3 > &strain, const tnsr::II< DataType, 3 > &inv_metric) |
The longitudinal operator, or vector gradient, \((L\beta)^{ij}\). More... | |
template<typename DataType > | |
void | longitudinal_operator (gsl::not_null< tnsr::II< DataType, 3 > * > result, const tnsr::I< DataType, 3 > &shift, const tnsr::iJ< DataType, 3 > &deriv_shift, const tnsr::II< DataType, 3 > &inv_metric, const tnsr::Ijj< DataType, 3 > &christoffel_second_kind) |
The longitudinal operator, or vector gradient, \((L\beta)^{ij}\). More... | |
template<typename DataType > | |
void | longitudinal_operator_flat_cartesian (gsl::not_null< tnsr::II< DataType, 3 > * > result, const tnsr::ii< DataType, 3 > &strain) |
The conformal longitudinal operator \((L\beta)^{ij}\) on a flat conformal metric in Cartesian coordinates \(\gamma_{ij}=\delta_{ij}\). More... | |
Items related to solving the Extended Conformal Thin Sandwich (XCTS) decomposition of the Einstein constraint equations.
The XCTS equations
\begin{align} \bar{D}^2 \psi - \frac{1}{8}\psi\bar{R} - \frac{1}{12}\psi^5 K^2 + \frac{1}{8}\psi^{-7}\bar{A}_{ij}\bar{A}^{ij} &= -2\pi\psi^5\rho \\ \bar{D}_i(\bar{L}\beta)^{ij} - (\bar{L}\beta)^{ij}\bar{D}_i \ln(\bar{\alpha}) &= \bar{\alpha}\bar{D}_i\left(\bar{\alpha}^{-1}\bar{u}^{ij} \right) + \frac{4}{3}\bar{\alpha}\psi^6\bar{D}^j K + 16\pi\bar{\alpha} \psi^{10}S^j \\ \bar{D}^2\left(\alpha\psi\right) &= \alpha\psi\left(\frac{7}{8}\psi^{-8}\bar{A}_{ij}\bar{A}^{ij} + \frac{5}{12}\psi^4 K^2 + \frac{1}{8}\bar{R} + 2\pi\psi^4\left(\rho + 2S\right)\right) - \psi^5\partial_t K + \psi^5\beta^i\bar{D}_i K \\ \text{with} \quad \bar{A} &= \frac{1}{2\bar{\alpha}} \left((\bar{L}\beta)^{ij} - \bar{u}^{ij}\right) \\ \quad \text{and} \quad \bar{\alpha} &= \alpha \psi^{-6} \end{align}
are a set of nonlinear elliptic equations that the spacetime metric in general relativity must satisfy at all times. For an introduction see e.g. [14], in particular Box 3.3 which is largely mirrored here. We solve the XCTS equations for the conformal factor \(\psi\), the product of lapse times conformal factor \(\alpha\psi\) and the shift vector \(\beta^j\). The remaining quantities in the equations, i.e. the conformal metric \(\bar{\gamma}_{ij}\), the trace of the extrinsic curvature \(K\), their respective time derivatives \(\bar{u}_{ij}\) and \(\partial_t K\), the energy density \(\rho\), the stress-energy trace \(S\) and the momentum density \(S^i\), are freely specifyable fields that define the physical scenario at hand. Of particular importance is the conformal metric, which defines the background geometry, the covariant derivative \(\bar{D}\), the Ricci scalar \(\bar{R}\) and the longitudinal operator
\begin{equation} \left(\bar{L}\beta\right)^{ij} = \bar{D}^i\beta^j + \bar{D}^j\beta^i - \frac{2}{3}\bar{\gamma}^{ij}\bar{D}_k\beta^k \text{.} \end{equation}
Note that the XCTS equations are essentially two Poisson equations and one Elasticity equation with nonlinear sources on a curved geometry. In this analogy, the longitudinal operator plays the role of the elastic constitutive relation that connects the symmetric "shift strain" \(\bar{D}_{(i}\beta_{j)}\) with the "stress" \((\bar{L}\beta)^{ij}\) of which we take the divergence in the momentum constraint. This particular constitutive relation is equivalent to an isotropic and homogeneous material with bulk modulus \(K=0\) (not to be confused with the extrinsic curvature trace \(K\) in this context) and shear modulus \(\mu=1\) (see Elasticity::ConstitutiveRelations::IsotropicHomogeneous
).
Once the XCTS equations are solved we can construct the spatial metric and extrinsic curvature as
\begin{align} \gamma_{ij} &= \psi^4\bar{\gamma}_{ij} \\ K_{ij} &= \psi^{-2}\bar{A}_{ij} + \frac{1}{3}\gamma_{ij} K \end{align}
from which we can compose the full spacetime metric.
|
strong |
Indicates a subset of the XCTS equations.
|
strong |
Types of conformal geometries for the XCTS equations.
void Xcts::add_curved_hamiltonian_or_lapse_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_or_lapse_equation, |
const Scalar< DataVector > & | conformal_ricci_scalar, | ||
const Scalar< DataVector > & | field, | ||
double | add_constant = 0. |
||
) |
Add the contributions from a curved background geometry to the Hamiltonian constraint or lapse equation.
Adds \(\frac{1}{8}\psi\bar{R}\). This term appears both in the Hamiltonian constraint and the lapse equation (where in the latter \(\psi\) is replaced by \(\alpha\psi\)).
This term is linear.
void Xcts::add_curved_momentum_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_constraint, |
gsl::not_null< Scalar< DataVector > * > | lapse_equation, | ||
gsl::not_null< tnsr::I< DataVector, 3 > * > | momentum_constraint, | ||
const tnsr::I< DataVector, 3 > & | conformal_momentum_density, | ||
const tnsr::i< DataVector, 3 > & | extrinsic_curvature_trace_gradient, | ||
const tnsr::ii< DataVector, 3 > & | conformal_metric, | ||
const tnsr::II< DataVector, 3 > & | inv_conformal_metric, | ||
const tnsr::I< DataVector, 3 > & | minus_div_dt_conformal_metric, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_minus_one, | ||
const tnsr::I< DataVector, 3 > & | conformal_factor_flux, | ||
const tnsr::I< DataVector, 3 > & | lapse_times_conformal_factor_flux, | ||
const tnsr::II< DataVector, 3 > & | longitudinal_shift_minus_dt_conformal_metric | ||
) |
Add the nonlinear source to the momentum constraint and add the "distortion" source term to the Hamiltonian constraint and lapse equation.
Adds \(\left((\bar{L}\beta)^{ij} - \bar{u}^{ij}\right) \left(\frac{\partial_j (\alpha\psi)}{\alpha\psi} - 7 \frac{\partial_j \psi}{\psi}\right) + \partial_j\bar{u}^{ij} + \frac{4}{3}\frac{\alpha\psi}{\psi}\bar{\gamma}^{ij}\partial_j K + 16\pi\left(\alpha\psi\right)\psi^{3-n} \bar{S}^i\) to the momentum constraint, where \(n\) is the ConformalMatterScale
and \(\bar{S}^i=\psi^n S^i\) is the conformally-scaled momentum density.
Note that the \(\partial_j\bar{u}^{ij}\) term is not the full covariant divergence, but only the partial-derivatives part of it. The curved contribution to this term can be added together with the curved contribution to the flux divergence of the dynamic shift variable with the Elasticity::add_curved_sources
function.
Also adds \(-\frac{1}{8}\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\) to the Hamiltonian constraint and \(\frac{7}{8}\alpha\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\) to the lapse equation.
void Xcts::add_distortion_hamiltonian_and_lapse_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_constraint, |
gsl::not_null< Scalar< DataVector > * > | lapse_equation, | ||
const Scalar< DataVector > & | longitudinal_shift_minus_dt_conformal_metric_square, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_minus_one | ||
) |
Add the "distortion" source term to the Hamiltonian constraint and the lapse equation.
Adds \(-\frac{1}{8}\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\) to the Hamiltonian constraint and \(\frac{7}{8}\alpha\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\) to the lapse equation.
void Xcts::add_distortion_hamiltonian_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_constraint, |
const Scalar< DataVector > & | longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, | ||
const Scalar< DataVector > & | conformal_factor_minus_one | ||
) |
Add the "distortion" source term to the Hamiltonian constraint.
Adds \(-\frac{1}{8}\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\).
void Xcts::add_flat_cartesian_momentum_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_constraint, |
gsl::not_null< Scalar< DataVector > * > | lapse_equation, | ||
gsl::not_null< tnsr::I< DataVector, 3 > * > | momentum_constraint, | ||
const tnsr::I< DataVector, 3 > & | conformal_momentum_density, | ||
const tnsr::i< DataVector, 3 > & | extrinsic_curvature_trace_gradient, | ||
const tnsr::I< DataVector, 3 > & | minus_div_dt_conformal_metric, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_minus_one, | ||
const tnsr::I< DataVector, 3 > & | conformal_factor_flux, | ||
const tnsr::I< DataVector, 3 > & | lapse_times_conformal_factor_flux, | ||
const tnsr::II< DataVector, 3 > & | longitudinal_shift_minus_dt_conformal_metric | ||
) |
Add the nonlinear source to the momentum constraint and add the "distortion" source term to the Hamiltonian constraint and lapse equation.
Adds \(\left((\bar{L}\beta)^{ij} - \bar{u}^{ij}\right) \left(\frac{\partial_j (\alpha\psi)}{\alpha\psi} - 7 \frac{\partial_j \psi}{\psi}\right) + \partial_j\bar{u}^{ij} + \frac{4}{3}\frac{\alpha\psi}{\psi}\bar{\gamma}^{ij}\partial_j K + 16\pi\left(\alpha\psi\right)\psi^{3-n} \bar{S}^i\) to the momentum constraint, where \(n\) is the ConformalMatterScale
and \(\bar{S}^i=\psi^n S^i\) is the conformally-scaled momentum density.
Note that the \(\partial_j\bar{u}^{ij}\) term is not the full covariant divergence, but only the partial-derivatives part of it. The curved contribution to this term can be added together with the curved contribution to the flux divergence of the dynamic shift variable with the Elasticity::add_curved_sources
function.
Also adds \(-\frac{1}{8}\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\) to the Hamiltonian constraint and \(\frac{7}{8}\alpha\psi^{-7}\bar{A}^{ij}\bar{A}_{ij}\) to the lapse equation.
void Xcts::add_hamiltonian_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_constraint, |
const Scalar< DataVector > & | conformal_energy_density, | ||
const Scalar< DataVector > & | extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | conformal_factor_minus_one | ||
) |
Add the nonlinear source to the Hamiltonian constraint on a flat conformal background in Cartesian coordinates and with \(\bar{u}_{ij}=0=\beta^i\).
Adds \(\frac{1}{12}\psi^5 K^2 - 2\pi\psi^{5-n}\bar{\rho}\) where \(n\) is the ConformalMatterScale
and \(\bar{\rho}=\psi^n\rho\) is the conformally-scaled energy density. Additional sources can be added with add_distortion_hamiltonian_sources
and add_curved_hamiltonian_or_lapse_sources
.
void Xcts::add_lapse_sources | ( | gsl::not_null< Scalar< DataVector > * > | lapse_equation, |
const Scalar< DataVector > & | conformal_energy_density, | ||
const Scalar< DataVector > & | conformal_stress_trace, | ||
const Scalar< DataVector > & | extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | dt_extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | shift_dot_deriv_extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_minus_one | ||
) |
Add the nonlinear source to the lapse equation on a flat conformal background in Cartesian coordinates and with \(\bar{u}_{ij}=0=\beta^i\).
Adds \((\alpha\psi)\left(\frac{5}{12}\psi^4 K^2 + 2\pi\psi^{4-n} \left(\bar{\rho} + 2\bar{S}\right)\right) + \psi^5 \left(\beta^i\partial_i K - \partial_t K\right)\) where \(n\) is the ConformalMatterScale
and matter quantities are conformally-scaled. Additional sources can be added with add_distortion_hamiltonian_and_lapse_sources
and add_curved_hamiltonian_or_lapse_sources
.
void Xcts::add_linearized_distortion_hamiltonian_and_lapse_sources | ( | gsl::not_null< Scalar< DataVector > * > | hamiltonian_constraint, |
gsl::not_null< Scalar< DataVector > * > | lapse_equation, | ||
const Scalar< DataVector > & | longitudinal_shift_minus_dt_conformal_metric_square, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_minus_one, | ||
const Scalar< DataVector > & | conformal_factor_correction, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_correction | ||
) |
The linearization of add_distortion_hamiltonian_and_lapse_sources
Note that this linearization is only w.r.t. \(\psi\) and \(\alpha\psi\).
void Xcts::add_linearized_distortion_hamiltonian_sources | ( | gsl::not_null< Scalar< DataVector > * > | linearized_hamiltonian_constraint, |
const Scalar< DataVector > & | longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | conformal_factor_correction | ||
) |
The linearization of add_distortion_hamiltonian_sources
Note that this linearization is only w.r.t. \(\psi\).
void Xcts::add_linearized_lapse_sources | ( | gsl::not_null< Scalar< DataVector > * > | linearized_lapse_equation, |
const Scalar< DataVector > & | conformal_energy_density, | ||
const Scalar< DataVector > & | conformal_stress_trace, | ||
const Scalar< DataVector > & | extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | dt_extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | shift_dot_deriv_extrinsic_curvature_trace, | ||
const Scalar< DataVector > & | conformal_factor_minus_one, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_minus_one, | ||
const Scalar< DataVector > & | conformal_factor_correction, | ||
const Scalar< DataVector > & | lapse_times_conformal_factor_correction | ||
) |
The linearization of add_lapse_sources
Note that this linearization is only w.r.t. \(\psi\) and \(\alpha\psi\). The linearization w.r.t. \(\beta^i\) is added in add_curved_linearized_momentum_sources
or add_flat_cartesian_linearized_momentum_sources
.
void Xcts::adm_angular_momentum_z_surface_integrand | ( | gsl::not_null< tnsr::I< DataVector, 3 > * > | result, |
const tnsr::II< DataVector, 3 > & | linear_momentum_surface_integrand, | ||
const tnsr::I< DataVector, 3 > & | coords | ||
) |
Surface integrand for the z-component of the ADM angular momentum.
We define the ADM angular momentum surface integral as (see Eq. 23 in [153]):
\begin{equation} J_\text{ADM}^z = \frac{1}{8\pi} \oint_{S_\infty} \Big( x P^{yj} - y P^{xj} \Big) \, dS_j, \end{equation}
where \(1/(8\pi) P^{jk}\) is the result from adm_linear_momentum_surface_integrand
.
adm_angular_momentum_z_volume_integrand
, this integrand needs to be contracted with the Euclidean face normal and integrated with the Euclidean area element.result | output pointer |
linear_momentum_surface_integrand | the quantity \(1/(8\pi) P^{ij}\) (result of adm_linear_momentum_surface_integrand ) |
coords | the inertial coordinates \(x^i\) |
void Xcts::adm_angular_momentum_z_volume_integrand | ( | gsl::not_null< Scalar< DataVector > * > | result, |
const tnsr::I< DataVector, 3 > & | linear_momentum_volume_integrand, | ||
const tnsr::I< DataVector, 3 > & | coords | ||
) |
Volume integrand for the z-component of the ADM angular momentum.
We define the ADM angular momentum volume integral as (see Eq. 23 in [153]):
\begin{equation} J_\text{ADM}^z = - \frac{1}{8\pi} \int_{V_\infty} \Big( x G^y - y G^x \Big) \, dV, \end{equation}
where \(-1/(8\pi) G^i\) is the result from adm_linear_momentum_volume_integrand
.
adm_angular_momentum_z_surface_integrand
, this integrand needs to be integrated with the Euclidean volume element.result | output pointer |
linear_momentum_volume_integrand | the quantity \(-1/(8\pi) G^i\) (result of adm_linear_momentum_volume_integrand ) |
coords | the inertial coordinates \(x^i\) |
void Xcts::adm_linear_momentum_surface_integrand | ( | gsl::not_null< tnsr::II< DataVector, 3 > * > | result, |
const Scalar< DataVector > & | conformal_factor, | ||
const tnsr::II< DataVector, 3 > & | inv_spatial_metric, | ||
const tnsr::II< DataVector, 3 > & | inv_extrinsic_curvature, | ||
const Scalar< DataVector > & | trace_extrinsic_curvature | ||
) |
Surface integrand for the ADM linear momentum calculation.
We define the ADM linear momentum integral as (see Eqs. 19-20 in [153]):
\begin{equation} P_\text{ADM}^i = \frac{1}{8\pi} \oint_{S_\infty} \psi^{10} \Big( K^{ij} - K \gamma^{ij} \Big) \, dS_j. \end{equation}
adm_linear_momentum_volume_integrand
, this integrand needs to be contracted with the Euclidean face normal and integrated with the Euclidean area element.result | output pointer |
conformal_factor | the conformal factor \(\psi\) |
inv_spatial_metric | the inverse spatial metric \(\gamma^{ij}\) |
inv_extrinsic_curvature | the inverse extrinsic curvature \(K^{ij}\) |
trace_extrinsic_curvature | the trace of the extrinsic curvature \(K\) |
void Xcts::adm_linear_momentum_volume_integrand | ( | gsl::not_null< tnsr::I< DataVector, 3 > * > | result, |
const tnsr::II< DataVector, 3 > & | surface_integrand, | ||
const Scalar< DataVector > & | conformal_factor, | ||
const tnsr::i< DataVector, 3 > & | deriv_conformal_factor, | ||
const tnsr::ii< DataVector, 3 > & | conformal_metric, | ||
const tnsr::II< DataVector, 3 > & | inv_conformal_metric, | ||
const tnsr::Ijj< DataVector, 3 > & | conformal_christoffel_second_kind, | ||
const tnsr::i< DataVector, 3 > & | conformal_christoffel_contracted | ||
) |
Volume integrand for ADM linear momentum calculation defined as (see Eq. 20 in [153]):
\begin{equation} P_\text{ADM}^i = - \frac{1}{8\pi} \int_{V_\infty} \Big( \bar\Gamma^i_{jk} P^{jk} + \bar\Gamma^j_{jk} P^{jk} - 2 \bar\gamma_{jk} P^{jk} \bar\gamma^{il} \partial_l(\ln\psi) \Big) \, dV, \end{equation}
where \(1/(8\pi) P^{jk}\) is the result from adm_linear_momentum_surface_integrand
.
adm_linear_momentum_surface_integrand
, this integrand needs to be integrated with the Euclidean volume element.result | output pointer |
surface_integrand | the quantity \(1/(8\pi) P^{ij}\) (result of adm_linear_momentum_surface_integrand ) |
conformal_factor | the conformal factor \(\psi\) |
deriv_conformal_factor | the gradient of the conformal factor \(\partial_i\psi\) |
conformal_metric | the conformal metric \(\bar\gamma_{ij}\) |
inv_conformal_metric | the inverse conformal metric \(\bar\gamma^{ij}\) |
conformal_christoffel_second_kind | the conformal christoffel symbol \(\bar\Gamma^i_{jk}\) |
conformal_christoffel_contracted | the contracted conformal christoffel symbol \(\bar\Gamma_i\) |
void Xcts::adm_mass_surface_integrand | ( | gsl::not_null< tnsr::I< DataVector, 3 > * > | result, |
const tnsr::i< DataVector, 3 > & | deriv_conformal_factor, | ||
const tnsr::II< DataVector, 3 > & | inv_conformal_metric, | ||
const tnsr::Ijj< DataVector, 3 > & | conformal_christoffel_second_kind, | ||
const tnsr::i< DataVector, 3 > & | conformal_christoffel_contracted | ||
) |
Surface integrand for the ADM mass calculation.
We define the ADM mass integral as (see Eq. 3.139 in [14]):
\begin{equation} M_\text{ADM} = \frac{1}{16\pi} \oint_{S_\infty} \Big( \bar\gamma^{jk} \bar\Gamma^i_{jk} - \bar\gamma^{ij} \bar\Gamma_{j} - 8 \bar\gamma^{ij} \partial_j \psi \Big) d\bar{S}_i. \end{equation}
adm_mass_volume_integrand
, this integrand needs to be contracted with the conformal face normal and integrated with the conformal area element.result | output pointer |
deriv_conformal_factor | the gradient of the conformal factor \(\partial_i \psi\) |
inv_conformal_metric | the inverse conformal metric \(\bar\gamma^{ij}\) |
conformal_christoffel_second_kind | the conformal christoffel symbol \(\bar\Gamma^i_{jk}\) |
conformal_christoffel_contracted | the conformal christoffel symbol contracted in its first two indices \(\bar\Gamma_{i} = \bar\Gamma^j_{ij}\) |
void Xcts::adm_mass_volume_integrand | ( | gsl::not_null< Scalar< DataVector > * > | result, |
const Scalar< DataVector > & | conformal_factor, | ||
const Scalar< DataVector > & | conformal_ricci_scalar, | ||
const Scalar< DataVector > & | trace_extrinsic_curvature, | ||
const Scalar< DataVector > & | longitudinal_shift_minus_dt_conformal_metric_over_lapse_square, | ||
const Scalar< DataVector > & | energy_density, | ||
const tnsr::II< DataVector, 3 > & | inv_conformal_metric, | ||
const tnsr::iJK< DataVector, 3 > & | deriv_inv_conformal_metric, | ||
const tnsr::Ijj< DataVector, 3 > & | conformal_christoffel_second_kind, | ||
const tnsr::i< DataVector, 3 > & | conformal_christoffel_contracted, | ||
const tnsr::iJkk< DataVector, 3 > & | deriv_conformal_christoffel_second_kind | ||
) |
Volume integrand for the ADM mass calculation.
We cast the ADM mass as an infinite volume integral by applying Gauss' law on the surface integral defined in adm_mass_surface_integrand
:
\begin{equation} M_\text{ADM} = \frac{1}{16\pi} \int_{V_\infty} \Big( \partial_i \bar\gamma^{jk} \bar\Gamma^i_{jk} + \bar\gamma^{jk} \partial_i \bar\Gamma^i_{jk} + \bar\Gamma_l \bar\gamma^{jk} \bar\Gamma^l_{jk} - \partial_i \bar\gamma^{ij} \bar\Gamma_j - \bar\gamma^{ij} \partial_i \bar\Gamma_j - \bar\Gamma_l \bar\gamma^{lj} \bar\Gamma_j - 8 \bar D^2 \psi \Big) d\bar{V}, \end{equation}
where we can use the Hamiltonian constraint (Eq. 3.37 in [14]) to replace \(8 \bar D^2 \psi\) with
\begin{equation} 8 \bar D^2 \psi = \psi \bar R + \frac{2}{3} \psi^5 K^2 - \frac{1}{4} \psi^5 \frac{1}{\alpha^2} \Big[ (\bar L \beta)_{ij} - \bar u_{ij} \Big] \Big[ (\bar L \beta)^{ij} - \bar u^{ij} \Big] - 16\pi \psi^5 \rho. \end{equation}
adm_mass_surface_integrand
, this integrand needs to be integrated with the conformal volume element.result | output pointer |
conformal_factor | the conformal factor |
conformal_ricci_scalar | the conformal Ricci scalar \(\bar R\) |
trace_extrinsic_curvature | the extrinsic curvature trace \(K\) |
longitudinal_shift_minus_dt_conformal_metric_over_lapse_square | the quantity computed in Xcts::Tags::LongitudinalShiftMinusDtConformalMetricOverLapseSquare |
energy_density | the energy density \(\rho\) |
inv_conformal_metric | the inverse conformal metric \(\bar\gamma^{ij}\) |
deriv_inv_conformal_metric | the gradient of the inverse conformal metric \(\partial_i \bar\gamma^{jk}\) |
conformal_christoffel_second_kind | the conformal christoffel symbol \(\bar\Gamma^i_{jk}\) |
conformal_christoffel_contracted | the conformal christoffel symbol contracted in its first two indices \(\bar\Gamma_{i} = \bar\Gamma^j_{ij}\) |
deriv_conformal_christoffel_second_kind | the gradient of the conformal christoffel symbol \(\partial_i \bar\Gamma^j_{kl}\) |
void Xcts::center_of_mass_surface_integrand | ( | gsl::not_null< tnsr::I< DataVector, 3 > * > | result, |
const Scalar< DataVector > & | conformal_factor, | ||
const tnsr::I< DataVector, 3 > & | coords | ||
) |
Surface integrand for the center of mass calculation.
We define the center of mass integral as
\begin{equation} C_\text{CoM}^i = \frac{3}{8 \pi M_\text{ADM}} \oint_{S_\infty} (\psi^4 - 1) n^i \, dA, \end{equation}
where \(n^i = x^i / r\) and \(r = \sqrt{x^2 + y^2 + z^2}\).
Analytically, this is identical to the definition in Eq. (25) of [153] because
\begin{equation} \oint_{S_\infty} n^i \, dA = 0. \end{equation}
Numerically, we have found that subtracting \(1\) from \(\psi^4\) results in less round-off errors, leading to a more accurate center of mass.
One way to interpret this integral is that we are summing over the unit vectors \(n^i\), rescaled by \(\psi^4\), in all directions. If \(\psi(\vec r)\) is constant, no rescaling happens and all the unit vectors cancel out. If \(\psi(\vec r)\) is not constant, then \(\vec C_\text{CoM}\) will emerge from the difference of large numbers (sum of rescaled \(n^i\) in each subdomain). With larger and larger numbers being involved in this cancellation (i.e. with increasing radius of \(S_\infty\)), we loose numerical accuracy. In other words, we are seeking the subdominant terms. Since \(\psi^4 \to 1\) in conformal flatness, subtracting \(1\) from it in the integrand makes the numbers involved in this cancellation smaller, reducing this issue. We have also tried different variations of this integrand with the same motivation, but \((\psi^4 - 1)\) is the best one when taking simplicity and accuracy gain into consideration.
center_of_mass_volume_integrand
, this integrand needs to be integrated with the Euclidean area element.Xcts::adm_mass_surface_integrand
result | output pointer |
conformal_factor | the conformal factor \(\psi\) |
coords | the inertial coordinates \(x^i\) |
void Xcts::center_of_mass_volume_integrand | ( | gsl::not_null< tnsr::I< DataVector, 3 > * > | result, |
const Scalar< DataVector > & | conformal_factor, | ||
const tnsr::i< DataVector, 3, Frame::Inertial > & | deriv_conformal_factor, | ||
const tnsr::I< DataVector, 3 > & | coords | ||
) |
Volume integrand for the center of mass calculation.
We cast the center of mass as an infinite volume integral by applying Gauss' law on the surface integral defined in center_of_mass_surface_integrand
:
\begin{equation} C_\text{CoM}^i = \frac{3}{8 \pi M_\text{ADM}} \int_{V_\infty} \Big( 4 \psi^3 \partial_j \psi n^i n^j + \frac{2}{r} \psi^4 n^i \Big) dV = \frac{3}{4 \pi M_\text{ADM}} \int_{V_\infty} \frac{1}{r^2} \Big( 2 \psi^3 \partial_j \psi x^i x^j + \psi^4 x^i \Big) dV, \end{equation}
where \(n^i = x^i / r\) and \(r = \sqrt{x^2 + y^2 + z^2}\).
center_of_mass_surface_integrand
, this integrand needs to be integrated with the Euclidean volume element.center_of_mass_surface_integrand
result | output pointer |
conformal_factor | the conformal factor \(\psi\) |
deriv_conformal_factor | the gradient of the conformal factor \(\partial_i \psi\) |
coords | the inertial coordinates \(x^i\) |
void Xcts::extrinsic_curvature | ( | const gsl::not_null< tnsr::ii< DataType, 3 > * > | result, |
const Scalar< DataType > & | conformal_factor, | ||
const Scalar< DataType > & | lapse, | ||
const tnsr::ii< DataType, 3 > & | conformal_metric, | ||
const tnsr::II< DataType, 3 > & | longitudinal_shift_minus_dt_conformal_metric, | ||
const Scalar< DataType > & | trace_extrinsic_curvature | ||
) |
Extrinsic curvature computed from the conformal decomposition used in the XCTS system.
The extrinsic curvature decomposition is (see Eq. 3.113 in [14]):
\begin{equation} K_{ij} = A_{ij} + \frac{1}{3}\gamma_{ij}K = \frac{\psi^4}{2\lapse}\left((\bar{L}\beta)_{ij} - \bar{u}_{ij}\right) + \frac{\psi^4}{3} \bar{\gamma}_{ij} K \end{equation}
result | output buffer for the extrinsic curvature |
conformal_factor | the conformal factor \(\psi\) |
lapse | the lapse \(\alpha\) |
conformal_metric | the conformal metric \(\bar{\gamma}_{ij}\) |
longitudinal_shift_minus_dt_conformal_metric | the term \((\bar{L}\beta)^{ij} - \bar{u}^{ij}\). Note that \((\bar{L}\beta)^{ij}\) is the conformal longitudinal shift, and \((\bar{L}\beta)^{ij}=\psi^4(L\beta)^{ij}\) (Eq. 3.98 in [14]). See also Xcts::longitudinal_operator. |
trace_extrinsic_curvature | the trace of the extrinsic curvature, \(K=\gamma^{ij}K_{ij}\). Note that it is a conformal invariant, \(K=\bar{K}\) (by choice). |
void Xcts::longitudinal_operator | ( | gsl::not_null< tnsr::II< DataType, 3 > * > | result, |
const tnsr::I< DataType, 3 > & | shift, | ||
const tnsr::iJ< DataType, 3 > & | deriv_shift, | ||
const tnsr::II< DataType, 3 > & | inv_metric, | ||
const tnsr::Ijj< DataType, 3 > & | christoffel_second_kind | ||
) |
The longitudinal operator, or vector gradient, \((L\beta)^{ij}\).
Computes the longitudinal operator
\begin{equation} (L\beta)^{ij} = \nabla^i \beta^j + \nabla^j \beta^i - \frac{2}{3}\gamma^{ij}\nabla_k\beta^k \end{equation}
of a vector field \(\beta^i\), where \(\nabla\) denotes the covariant derivative w.r.t. the metric \(\gamma\) (see e.g. Eq. (3.50) in [14]). Note that in the XCTS equations the longitudinal operator is typically applied to conformal quantities and w.r.t. the conformal metric \(\bar{\gamma}\).
In terms of the symmetric "strain" quantity \(B_{ij}=\nabla_{(i}\gamma_{j)k}\beta^k\) the longitudinal operator is:
\begin{equation} (L\beta)^{ij} = 2\left(\gamma^{ik}\gamma^{jl} - \frac{1}{3} \gamma^{ij}\gamma^{kl}\right) B_{kl} \end{equation}
Note that the strain can be computed with Elasticity::strain
.
void Xcts::longitudinal_operator | ( | gsl::not_null< tnsr::II< DataType, 3 > * > | result, |
const tnsr::ii< DataType, 3 > & | strain, | ||
const tnsr::II< DataType, 3 > & | inv_metric | ||
) |
The longitudinal operator, or vector gradient, \((L\beta)^{ij}\).
Computes the longitudinal operator
\begin{equation} (L\beta)^{ij} = \nabla^i \beta^j + \nabla^j \beta^i - \frac{2}{3}\gamma^{ij}\nabla_k\beta^k \end{equation}
of a vector field \(\beta^i\), where \(\nabla\) denotes the covariant derivative w.r.t. the metric \(\gamma\) (see e.g. Eq. (3.50) in [14]). Note that in the XCTS equations the longitudinal operator is typically applied to conformal quantities and w.r.t. the conformal metric \(\bar{\gamma}\).
In terms of the symmetric "strain" quantity \(B_{ij}=\nabla_{(i}\gamma_{j)k}\beta^k\) the longitudinal operator is:
\begin{equation} (L\beta)^{ij} = 2\left(\gamma^{ik}\gamma^{jl} - \frac{1}{3} \gamma^{ij}\gamma^{kl}\right) B_{kl} \end{equation}
Note that the strain can be computed with Elasticity::strain
.
void Xcts::longitudinal_operator_flat_cartesian | ( | gsl::not_null< tnsr::II< DataType, 3 > * > | result, |
const tnsr::ii< DataType, 3 > & | strain | ||
) |
The conformal longitudinal operator \((L\beta)^{ij}\) on a flat conformal metric in Cartesian coordinates \(\gamma_{ij}=\delta_{ij}\).
Xcts::longitudinal_operator