SpECTRE  v2024.12.16
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
Computational Domain

The building blocks used to describe the computational domain. More...

Namespaces

namespace  domain
 Holds entities related to the computational domain.
 
namespace  domain::BoundaryConditions
 Domain support for applying boundary conditions
 
namespace  domain::CoordinateMaps::Tags
 Tags for the coordinate maps.
 
namespace  domain::creators
 Defines classes that create Domains.
 
namespace  domain::creators::time_dependence
 Classes and functions for adding time dependence to a domain.
 
namespace  domain::FunctionsOfTime
 Contains functions of time to support the dual frame system.
 
namespace  domain::Tags
 Tags for the domain.
 

Classes

class  Block< VolumeDim >
 A Block<VolumeDim> is a region of a VolumeDim-dimensional computational domain that defines the root node of a tree which is used to construct the Elements that cover a region of the computational domain. More...
 
struct  domain::CoordinateMaps::Tags::CoordinateMap< VolumeDim, SourceFrame, TargetFrame >
 The coordinate map from source to target coordinates. More...
 
class  domain::creators::BinaryCompactObject< UseWorldtube >
 A general domain for two compact objects. More...
 
class  domain::creators::CylindricalBinaryCompactObject
 A general domain for two compact objects based on cylinders. More...
 
class  DomainCreator< VolumeDim >
 Base class for creating Domains from an option string. More...
 
struct  domain::OptionTags::DomainCreator< Dim >
 The input file tag for the DomainCreator to use. More...
 
struct  domain::Tags::Domain< VolumeDim >
 The Domain. More...
 
struct  domain::Tags::InitialExtents< Dim >
 The number of grid points per dimension for all elements in each block of the initial computational domain. More...
 
struct  domain::Tags::InitialRefinementLevels< Dim >
 The initial refinement level per dimension for all elements in each block of the initial computational domain. More...
 
struct  domain::Tags::ObjectCenter< Label >
 The grid frame center of the given object. More...
 
class  Domain< VolumeDim >
 A wrapper around a vector of Blocks that represent the computational domain. More...
 
struct  PairOfFaces
 Each member in PairOfFaces holds the global corner ids of a block face. PairOfFaces is used in setting up periodic boundary conditions by identifying the two faces with each other. More...
 
class  VolumeCornerIterator< VolumeDim >
 Iterates over the corners of a VolumeDim-dimensional cube. More...
 
class  FaceCornerIterator< VolumeDim >
 Iterates over the 2^(VolumeDim-1) logical corners of the face of a VolumeDim-dimensional cube in the given direction. More...
 
struct  ElementLogicalCoordHolder< Dim >
 Holds element logical coordinates of an arbitrary set of points on a single Element. The arbitrary set of points is assumed to be a subset of a larger set of points spanning multiple Elements, and this class holds offsets that index into that larger set of points. More...
 
class  ElementMap< Dim, TargetFrame >
 The CoordinateMap for the Element from the Logical frame to the TargetFrame More...
 
class  ExcisionSphere< VolumeDim >
 The excision sphere information of a computational domain. The excision sphere is assumed to be a coordinate sphere in the grid frame. More...
 
struct  domain::Tags::UnnormalizedFaceNormal< VolumeDim, Frame >
 The unnormalized face normal one form. More...
 
struct  domain::Tags::InterfaceCompute< Tags::BoundaryDirectionsExterior< VolumeDim >, UnnormalizedFaceNormalCompute< VolumeDim, Frame > >
 Specialisation of UnnormalizedFaceNormal for the external boundaries which inverts the normals. Since ExternalBoundariesDirections are meant to represent ghost elements, the normals should correspond to the normals in said element, which are inverted with respect to the current element. More...
 
class  domain::FunctionsOfTime::FunctionOfTime
 Base class for FunctionsOfTime. More...
 
class  domain::FunctionsOfTime::PiecewisePolynomial< MaxDeriv >
 A function that has a piecewise-constant MaxDerivth derivative. More...
 
class  domain::FunctionsOfTime::QuaternionFunctionOfTime< MaxDeriv >
 A FunctionOfTime that stores quaternions for the rotation map. More...
 
struct  domain::Tags::InterfaceCompute< DirectionsTag, Tag >
 Compute tag for representing items computed on a set of interfaces. Can be retrieved using Tags::Interface<DirectionsTag, Tag> More...
 
struct  domain::Tags::Slice< DirectionsTag, Tag >
 Compute tag for representing a compute item that slices data from the volume to a set of interfaces. More...
 
struct  domain::Tags::InterfaceMesh< VolumeDim >
 Computes the VolumeDim-1 dimensional mesh on an interface from the volume mesh. Tags::InterfaceCompute<Dirs, InterfaceMesh<VolumeDim>> is retrievable as Tags::Interface<Dirs, Mesh<VolumeDim>> from the DataBox. More...
 
struct  domain::Tags::BoundaryCoordinates< VolumeDim, MovingMesh >
 Computes the coordinates in the frame Frame on the faces defined by Direction. Intended to be prefixed by a Tags::InterfaceCompute to define the directions on which to compute the coordinates. More...
 
struct  domain::Tags::JacobianDiagnostic< Dim >
 A diagnostic comparing the analytic and numerical Jacobians for a map. See domain::jacobian_diagnostic for details. More...
 
struct  domain::Tags::JacobianDiagnosticCompute< Dim, TargetFrame >
 Computes the Jacobian diagnostic, which compares the analytic Jacobian (provided by some coordinate map) to a numerical Jacobian computed using numerical partial derivatives. The coordinates must be in the target frame of the map. See domain::jacobian_diagnostic for details of the calculation. More...
 
struct  domain::Tags::MinimumGridSpacing< Dim, Frame >
 The minimum coordinate distance between grid points. More...
 
struct  domain::Tags::SizeOfElement< VolumeDim >
 The inertial-coordinate size of an element along each of its logical directions. More...
 
class  domain::BlockId
 Index a block of the computational domain. More...
 
class  BlockNeighbor< VolumeDim >
 Information about the neighbor of a host Block in a particular direction. More...
 
class  Direction< VolumeDim >
 A particular Side along a particular coordinate Axis. More...
 
struct  DirectionHash< Dim >
 Provides a perfect hash if the size of the hash table is 2 * Dim. To take advantage of this, use the FixedHashMap class. More...
 
class  DirectionMap< Dim, T >
 An optimized map with Direction keys. More...
 
class  Element< VolumeDim >
 A spectral element with knowledge of its neighbors. More...
 
class  ElementId< VolumeDim >
 An ElementId uniquely labels an Element. More...
 
class  Neighbors< VolumeDim >
 Information about the neighbors of a host Element in a particular direction. More...
 
class  OrientationMap< VolumeDim >
 A mapping of the logical coordinate axes of a host to the logical coordinate axes of a neighbor of the host. More...
 
class  SegmentId
 A SegmentId labels a segment of the interval [1,1] and is used to identify the bounds of an Element in a Block in each dimension. More...
 
struct  domain::Tags::Element< VolumeDim >
 The Element associated with the DataBox. More...
 
struct  domain::Tags::Mesh< VolumeDim >
 The computational grid of the Element in the DataBox. More...
 
struct  domain::Tags::ElementMap< VolumeDim, TargetFrame >
 The coordinate map from the ElementLogical frame to the TargetFrame. More...
 
struct  domain::Tags::Coordinates< Dim, Frame >
 The coordinates in a given frame. More...
 
struct  domain::Tags::MappedCoordinates< MapTag, SourceCoordsTag, CoordinatesTag >
 The coordinates in the target frame of MapTag. The SourceCoordsTag's frame must be the source frame of MapTag More...
 
struct  domain::Tags::InverseJacobian< Dim, SourceFrame, TargetFrame >
 The inverse Jacobian from the source frame to the target frame. More...
 
struct  domain::Tags::InverseJacobianCompute< MapTag, SourceCoordsTag >
 Computes the inverse Jacobian of the map held by MapTag at the coordinates held by SourceCoordsTag. The coordinates must be in the source frame of the map. More...
 
struct  domain::Tags::Jacobian< Dim, SourceFrame, TargetFrame >
 The Jacobian from the source frame to the target frame. More...
 
struct  domain::Tags::JacobianCompute< Dim, SourceFrame, TargetFrame >
 Computes the Jacobian of the map from the InverseJacobian<Dim, SourceFrame, TargetFrame> tag. More...
 
struct  domain::Tags::DetInvJacobian< SourceFrame, TargetFrame >
 The determinant of the inverse Jacobian from the source frame to the target frame. More...
 
struct  domain::Tags::DetInvJacobianCompute< Dim, SourceFrame, TargetFrame >
 Computes the determinant of the inverse Jacobian. More...
 
struct  domain::Tags::DetJacobian< SourceFrame, TargetFrame >
 The determinant of the Jacobian from the source frame to the target frame. More...
 
struct  domain::Tags::DetTimesInvJacobian< Dim, SourceFrame, TargetFrame >
 The inverse Jacobian times the determinant of the Jacobian. More...
 
struct  domain::Tags::VariablesBoundaryData
 Base tag for boundary data needed for updating the variables. More...
 
struct  domain::Tags::InternalDirections< VolumeDim >
 The set of directions to neighboring Elements. More...
 
struct  domain::Tags::BoundaryDirectionsInterior< VolumeDim >
 The set of directions which correspond to external boundaries. Used for representing data on the interior side of the external boundary faces. More...
 
struct  domain::Tags::BoundaryDirectionsExterior< VolumeDim >
 The set of directions which correspond to external boundaries. To be used to represent data which exists on the exterior side of the external boundary faces. More...
 
struct  domain::Tags::Interface< DirectionsTag, Tag >
 Tag which is either a SimpleTag for quantities on an interface, base tag to a compute item which acts on tags on an interface, or base tag to a compute item which slices a tag from the volume to an interface. More...
 
struct  domain::Tags::Direction< VolumeDim >
 Direction to an interface More...
 
struct  domain::OptionTags::ElementDistribution
 
struct  domain::Tags::ElementDistribution
 Tag that holds method for how to distribute the elements on the given resources. More...
 
struct  domain::Tags::LogicalCoordinates< VolumeDim >
 The logical coordinates in the Element. More...
 
struct  domain::Actions::CheckFunctionsOfTimeAreReady< Dim >
 Check that functions of time are up-to-date. More...
 
struct  domain::CheckFunctionsOfTimeAreReadyPostprocessor< Dim >
 Dense-output postprocessor to check that functions of time are up-to-date. More...
 

Macros

#define INSTANTIATE_MAPS_SIMPLE_FUNCTIONS(_, data)
 Generate instantiations of member functions of the CoordinateMap class template. More...
 
#define INSTANTIATE_MAPS_DATA_TYPE_FUNCTIONS(_, data)
 Generate instantiations of member functions of the CoordinateMap class template. More...
 
#define INSTANTIATE_MAPS_FUNCTIONS(MAPS_TUPLE, SOURCE_FRAME, TARGET_FRAMES_TUPLE, TYPES_TUPLE)
 Generate instantiations of member functions of the CoordinateMap class template. More...
 

Enumerations

enum class  ShellWedges { ShellWedges::All , ShellWedges::FourOnEquator , ShellWedges::OneAlongMinusX }
 The number of wedges to include in the Sphere domain. More...
 
enum class  Side : uint8_t { Uninitialized = 0 << detail::side_shift , Lower = 1 << detail::side_shift , Upper = 2 << detail::side_shift , Self = 3 << detail::side_shift }
 A label for the side of a manifold. More...
 

Functions

template<typename SourceFrame , typename TargetFrame , typename... Maps>
auto domain::make_coordinate_map (Maps &&... maps) -> CoordinateMap< SourceFrame, TargetFrame, std::decay_t< Maps >... >
 Creates a CoordinateMap of maps...
 
template<typename SourceFrame , typename TargetFrame , typename... Maps>
auto domain::make_coordinate_map_base (Maps &&... maps) -> std::unique_ptr< CoordinateMapBase< SourceFrame, TargetFrame, CoordinateMap< SourceFrame, TargetFrame, std::decay_t< Maps >... >::dim > >
 Creates a std::unique_ptr<CoordinateMapBase> of maps...
 
template<typename SourceFrame , typename TargetFrame , typename Arg0 , typename... Args>
auto domain::make_vector_coordinate_map_base (Arg0 &&arg_0, Args &&... remaining_args) -> std::vector< std::unique_ptr< CoordinateMapBase< SourceFrame, TargetFrame, std::decay_t< Arg0 >::dim > > >
 Creates a std::vector<std::unique_ptr<CoordinateMapBase>> containing the result of make_coordinate_map_base applied to each argument passed in.
 
template<typename SourceFrame , typename TargetFrame , size_t Dim, typename Map , typename... Maps>
auto domain::make_vector_coordinate_map_base (std::vector< Map > maps, const Maps &... remaining_maps) -> std::vector< std::unique_ptr< CoordinateMapBase< SourceFrame, TargetFrame, Dim > > >
 Creates a std::vector<std::unique_ptr<CoordinateMapBase>> containing the result of make_coordinate_map_base applied to each element of the vector of maps composed with the rest of the arguments passed in.
 
template<typename SourceFrame , typename TargetFrame , typename... Maps, typename NewMap >
CoordinateMap< SourceFrame, TargetFrame, Maps..., NewMap > domain::push_back (CoordinateMap< SourceFrame, TargetFrame, Maps... > old_map, NewMap new_map)
 Creates a CoordinateMap by appending the new map to the end of the old maps.
 
template<typename SourceFrame , typename TargetFrame , typename... Maps, typename NewMap >
CoordinateMap< SourceFrame, TargetFrame, NewMap, Maps... > domain::push_front (CoordinateMap< SourceFrame, TargetFrame, Maps... > old_map, NewMap new_map)
 Creates a CoordinateMap by prepending the new map to the beginning of the old maps.
 
template<size_t VolumeDim>
void set_internal_boundaries (gsl::not_null< std::vector< DirectionMap< VolumeDim, BlockNeighbor< VolumeDim > > > * > neighbors_of_all_blocks, const std::vector< std::array< size_t, two_to_the(VolumeDim)> > &corners_of_all_blocks)
 Sets up the BlockNeighbors using the corner numbering scheme provided by the user to deduce the correct neighbors and orientations. Does not set up periodic boundary conditions.
 
template<size_t VolumeDim>
void set_internal_boundaries (gsl::not_null< std::vector< DirectionMap< VolumeDim, BlockNeighbor< VolumeDim > > > * > neighbors_of_all_blocks, const std::vector< std::unique_ptr< domain::CoordinateMapBase< Frame::BlockLogical, Frame::Inertial, VolumeDim > > > &maps)
 Sets up the BlockNeighbors using the corner numbering scheme implied by the maps provided by the user to deduce the correct neighbors and orientations. More...
 
template<size_t VolumeDim>
void set_identified_boundaries (const std::vector< PairOfFaces > &identifications, const std::vector< std::array< size_t, two_to_the(VolumeDim)> > &corners_of_all_blocks, gsl::not_null< std::vector< DirectionMap< VolumeDim, BlockNeighbor< VolumeDim > > > * > neighbors_of_all_blocks)
 Sets up additional BlockNeighbors corresponding to any identifications of faces provided by the user. Can be used for manually setting up periodic boundary conditions.
 
template<size_t VolumeDim>
auto indices_for_rectilinear_domains (const Index< VolumeDim > &domain_extents, const std::vector< Index< VolumeDim > > &block_indices_to_exclude={}) -> std::vector< Index< VolumeDim > >
 The multi-indices that identify the individual Blocks in the lattice.
 
template<size_t VolumeDim>
auto corners_for_rectilinear_domains (const Index< VolumeDim > &domain_extents, const std::vector< Index< VolumeDim > > &block_indices_to_exclude={}) -> std::vector< std::array< size_t, two_to_the(VolumeDim)> >
 The corners for a rectilinear domain made of n-cubes. More...
 
std::array< OrientationMap< 3 >, 6 > orientations_for_sphere_wrappings ()
 An array of the orientations of the six blocks that make up a Sphere. More...
 
size_t which_wedge_index (const ShellWedges &which_wedges)
 The first index in the list "UpperZ", "LowerZ", "UpperY", "LowerY", "UpperX" "LowerX" that is included in which_wedges. It is 0 for ShellWedges::All, 2 for ShellWedges::FourOnEquator, and 5 for ShellWedges::OneAlongMinusX.
 
std::vector< domain::CoordinateMaps::Wedge< 3 > > sph_wedge_coordinate_maps (double inner_radius, double outer_radius, double inner_sphericity, double outer_sphericity, bool use_equiangular_map, const std::optional< std::pair< double, std::array< double, 3 > > > &offset_options=std::nullopt, bool use_half_wedges=false, const std::vector< double > &radial_partitioning={}, const std::vector< domain::CoordinateMaps::Distribution > &radial_distribution={domain::CoordinateMaps::Distribution::Linear}, ShellWedges which_wedges=ShellWedges::All, double opening_angle=M_PI_2)
 
std::vector< domain::CoordinateMaps::Frustumfrustum_coordinate_maps (double length_inner_cube, double length_outer_cube, bool equiangular_map_at_outer, bool equiangular_map_at_inner, const std::array< double, 3 > &origin_preimage={{0.0, 0.0, 0.0}}, domain::CoordinateMaps::Distribution radial_distribution=domain::CoordinateMaps::Distribution::Linear, std::optional< double > distribution_value=std::nullopt, double sphericity=0.0, double opening_angle=M_PI_2)
 These are the ten Frustums used in the DomainCreators for binary compact objects. The Frustums partition the volume defined by two bounding surfaces: The inner surface is the surface of the two joined inner cubes enveloping the two compact objects, while the outer is the surface of the outer cube. More...
 
std::vector< std::array< size_t, 8 > > corners_for_radially_layered_domains (size_t number_of_layers, bool include_central_block, const std::array< size_t, 8 > &central_block_corners={{1, 2, 3, 4, 5, 6, 7, 8}}, ShellWedges which_wedges=ShellWedges::All)
 The corners for a domain with radial layers. More...
 
std::vector< std::array< size_t, 8 > > corners_for_biradially_layered_domains (size_t number_of_radial_layers, size_t number_of_biradial_layers, bool include_central_block_lhs, bool include_central_block_rhs, const std::array< size_t, 8 > &central_block_corners_lhs={ {1, 2, 3, 4, 5, 6, 7, 8}})
 The corners for a domain with biradial layers. More...
 
template<typename TargetFrame >
auto cyl_wedge_coordinate_maps (double inner_radius, double outer_radius, double lower_z_bound, double upper_z_bound, bool use_equiangular_map, const std::vector< double > &radial_partitioning={}, const std::vector< double > &partitioning_in_z={}, const std::vector< domain::CoordinateMaps::Distribution > &radial_distribution={domain::CoordinateMaps::Distribution::Linear}, const std::vector< domain::CoordinateMaps::Distribution > &distribution_in_z={domain::CoordinateMaps::Distribution::Linear}) -> std::vector< std::unique_ptr< domain::CoordinateMapBase< Frame::BlockLogical, TargetFrame, 3 > > >
 These are the CoordinateMaps used in the Cylinder DomainCreator. More...
 
auto cyl_wedge_coord_map_center_blocks (double inner_radius, double lower_z_bound, double upper_z_bound, bool use_equiangular_map, const std::vector< double > &partitioning_in_z={}, const std::vector< domain::CoordinateMaps::Distribution > &distribution_in_z={domain::CoordinateMaps::Distribution::Linear}, CylindricalDomainParityFlip parity_flip=CylindricalDomainParityFlip::none) -> std::vector< domain::CoordinateMaps::ProductOf3Maps< domain::CoordinateMaps::Interval, domain::CoordinateMaps::Interval, domain::CoordinateMaps::Interval > >
 Same as cyl_wedge_coordinate_maps, but only the center square blocks,. More...
 
auto cyl_wedge_coord_map_surrounding_blocks (double inner_radius, double outer_radius, double lower_z_bound, double upper_z_bound, bool use_equiangular_map, double inner_circularity, const std::vector< double > &radial_partitioning={}, const std::vector< double > &partitioning_in_z={}, const std::vector< domain::CoordinateMaps::Distribution > &radial_distribution={domain::CoordinateMaps::Distribution::Linear}, const std::vector< domain::CoordinateMaps::Distribution > &distribution_in_z={domain::CoordinateMaps::Distribution::Linear}, CylindricalDomainParityFlip parity_flip=CylindricalDomainParityFlip::none) -> std::vector< domain::CoordinateMaps::ProductOf2Maps< domain::CoordinateMaps::Wedge< 2 >, domain::CoordinateMaps::Interval > >
 Same as cyl_wedge_coordinate_maps, but only the surrounding wedge blocks. More...
 
std::vector< std::array< size_t, 8 > > corners_for_cylindrical_layered_domains (size_t number_of_shells, size_t number_of_discs)
 The corners for a cylindrical domain split into discs with radial shells. More...
 
template<size_t VolumeDim>
std::array< size_t, two_to_the(VolumeDim)> discrete_rotation (const OrientationMap< VolumeDim > &orientation, const std::array< size_t, two_to_the(VolumeDim)> &corners_of_aligned)
 Permutes the corner numbers of an n-cube. More...
 
template<typename TargetFrame , size_t VolumeDim>
auto maps_for_rectilinear_domains (const Index< VolumeDim > &domain_extents, const std::array< std::vector< double >, VolumeDim > &block_demarcations, const std::vector< Index< VolumeDim > > &block_indices_to_exclude={}, const std::vector< OrientationMap< VolumeDim > > &orientations_of_all_blocks={}, bool use_equiangular_map=false) -> std::vector< std::unique_ptr< domain::CoordinateMapBase< Frame::BlockLogical, TargetFrame, VolumeDim > > >
 The CoordinateMaps for a rectilinear domain of n-cubes. More...
 
template<size_t VolumeDim>
Domain< VolumeDim > rectilinear_domain (const Index< VolumeDim > &domain_extents, const std::array< std::vector< double >, VolumeDim > &block_demarcations, const std::vector< Index< VolumeDim > > &block_indices_to_exclude={}, const std::vector< OrientationMap< VolumeDim > > &orientations_of_all_blocks={}, const std::array< bool, VolumeDim > &dimension_is_periodic=make_array< VolumeDim >(false), const std::vector< PairOfFaces > &identifications={}, bool use_equiangular_map=false)
 Create a rectilinear Domain of multicubes. More...
 
template<size_t Dim>
auto element_logical_coordinates (const std::vector< ElementId< Dim > > &element_ids, const std::vector< BlockLogicalCoords< Dim > > &block_coord_holders) -> std::unordered_map< ElementId< Dim >, ElementLogicalCoordHolder< Dim > >
 Given a set of points in block logical coordinates and their BlockIds, as returned from the function block_logical_coordinates, determines which Elements in a list of ElementIds contains each point, and determines the element logical coordinates of each point. More...
 
template<size_t VolumeDim>
tnsr::I< DataVector, VolumeDim, Frame::ElementLogicalinterface_logical_coordinates (const Mesh< VolumeDim - 1 > &mesh, const Direction< VolumeDim > &direction)
 Defines functions interface_logical_coordinates. More...
 
template<size_t Dim, typename Fr >
void domain::jacobian_diagnostic (const gsl::not_null< tnsr::i< DataVector, Dim, typename Frame::ElementLogical > * > jacobian_diag, const Jacobian< DataVector, Dim, typename Frame::ElementLogical, Fr > &analytic_jacobian, const TensorMetafunctions::prepend_spatial_index< tnsr::I< DataVector, Dim, Fr >, Dim, UpLo::Lo, typename Frame::ElementLogical > &numeric_jacobian_transpose)
 A diagnostic comparing the analytic and numerical Jacobians for a map. More...
 
template<size_t Dim, typename Frame >
double minimum_grid_spacing (const Index< Dim > &extents, const tnsr::I< DataVector, Dim, Frame > &coords)
 Finds the minimum coordinate distance between grid points.
 
template<size_t Dim>
size_t index_to_slice_at (const Index< Dim > &extents, const Direction< Dim > &direction, const size_t offset=0)
 Finds the index in the perpendicular dimension of an element boundary. More...
 
template<size_t VolumeDim>
std::vector< ElementId< VolumeDim > > initial_element_ids (size_t block_id, std::array< size_t, VolumeDim > initial_ref_levs, size_t grid_index=0)
 Create the ElementIds of the a single Block.
 
template<size_t VolumeDim>
std::vector< ElementId< VolumeDim > > initial_element_ids (const std::vector< std::array< size_t, VolumeDim > > &initial_refinement_levels, size_t grid_index=0)
 Create the ElementIds of the initial computational domain.
 
constexpr size_t maximum_number_of_neighbors (const size_t dim)
 Returns the maximum number of neighbors an element can have in dim dimensions. More...
 
constexpr size_t maximum_number_of_neighbors_per_direction (const size_t dim)
 Returns the maximum number of neighbors in each direction an element can have in dim dimensions. More...
 
template<size_t VolumeDim, typename T >
std::array< tt::remove_cvref_wrap_t< T >, VolumeDim > discrete_rotation (const OrientationMap< VolumeDim > &rotation, std::array< T, VolumeDim > source_coords)
 OrientationMaps define an active rotation of the logical axes that bring the axes of a host block into alignment with the logical axes of the neighbor block. discrete_rotation applies this active rotation on the coordinates as opposed to the axes. For a two-dimensional example, consider a host block and a neighbor block, where the OrientationMap between them is {η,+ξ}. A quarter- turn counterclockwise of the host block's logical axes would bring them into alignment with those of the neighbor. That is, after this active rotation, the blocks would be Aligned. Now consider a point A with coordinates (+1.0,-0.5). An active quarter-turn rotation counter-clockwise about the origin, keeping the axes fixed, brings point A into the coordinates (+0.5,+1.0). This is how discrete_rotation interprets the OrientationMap passed to it.
 
template<size_t VolumeDim>
tnsr::Ij< double, VolumeDim, Frame::NoFramediscrete_rotation_jacobian (const OrientationMap< VolumeDim > &orientation)
 Computes the Jacobian of the transformation that is computed by discrete_rotation() More...
 
template<size_t VolumeDim>
tnsr::Ij< double, VolumeDim, Frame::NoFramediscrete_rotation_inverse_jacobian (const OrientationMap< VolumeDim > &orientation)
 Computes the inverse Jacobian of the transformation that is computed by discrete_rotation()
 
template<size_t VolumeDim>
Mesh< VolumeDim - 1 > orient_mesh_on_slice (const Mesh< VolumeDim - 1 > &mesh_on_slice, size_t sliced_dim, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient a sliced Mesh to the logical frame of a neighbor element with the given orientation.
 
template<typename CacheTag , typename SimpleAction , typename Metavariables , typename ArrayIndex , typename Component , typename... Args>
bool domain::functions_of_time_are_ready_simple_action_callback (Parallel::GlobalCache< Metavariables > &cache, const ArrayIndex &array_index, const Component *component_p, const double time, const std::optional< std::unordered_set< std::string > > &functions_to_check, Args &&... args)
 Check that functions of time are up-to-date. More...
 
template<typename CacheTag , typename ThreadedAction , typename Metavariables , typename ArrayIndex , typename Component , typename... Args>
bool domain::functions_of_time_are_ready_threaded_action_callback (Parallel::GlobalCache< Metavariables > &cache, const ArrayIndex &array_index, const Component *component_p, const double time, const std::optional< std::unordered_set< std::string > > &functions_to_check, Args &&... args)
 Check that functions of time are up-to-date. More...
 
template<typename CacheTag , size_t Dim, typename Metavariables , typename ArrayIndex , typename Component >
bool domain::functions_of_time_are_ready_algorithm_callback (Parallel::GlobalCache< Metavariables > &cache, const ArrayIndex &array_index, const Component *component_p, const double time, const std::optional< std::unordered_set< std::string > > &functions_to_check=std::nullopt)
 Check that functions of time are up-to-date. More...
 
template<size_t Dim, typename Fr >
auto block_logical_coordinates (const Domain< Dim > &domain, const tnsr::I< DataVector, Dim, Fr > &x, double time=std::numeric_limits< double >::signaling_NaN(), const domain::FunctionsOfTimeMap &functions_of_time={}) -> std::vector< BlockLogicalCoords< Dim > >
 Computes the block logical coordinates and the containing BlockId of a set of points, given coordinates in a particular frame. More...
 
template<size_t Dim, typename Fr >
std::optional< tnsr::I< double, Dim, ::Frame::BlockLogical > > block_logical_coordinates_single_point (const tnsr::I< double, Dim, Fr > &input_point, const Block< Dim > &block, double time=std::numeric_limits< double >::signaling_NaN(), const domain::FunctionsOfTimeMap &functions_of_time={})
 Computes the block logical coordinates and the containing BlockId of a set of points, given coordinates in a particular frame. More...
 
template<size_t VolumeDim, typename TargetFrame >
void unnormalized_face_normal (const gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * > result, const Mesh< VolumeDim - 1 > &interface_mesh, const InverseJacobian< DataVector, VolumeDim, Frame::ElementLogical, TargetFrame > &inv_jacobian_on_interface, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim, typename TargetFrame >
tnsr::i< DataVector, VolumeDim, TargetFrame > unnormalized_face_normal (const Mesh< VolumeDim - 1 > &interface_mesh, const InverseJacobian< DataVector, VolumeDim, Frame::ElementLogical, TargetFrame > &inv_jacobian_on_interface, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim, typename TargetFrame >
void unnormalized_face_normal (gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * > result, const Mesh< VolumeDim - 1 > &interface_mesh, const ElementMap< VolumeDim, TargetFrame > &map, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim, typename TargetFrame >
tnsr::i< DataVector, VolumeDim, TargetFrame > unnormalized_face_normal (const Mesh< VolumeDim - 1 > &interface_mesh, const ElementMap< VolumeDim, TargetFrame > &map, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim, typename TargetFrame >
void unnormalized_face_normal (gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * > result, const Mesh< VolumeDim - 1 > &interface_mesh, const domain::CoordinateMapBase< Frame::ElementLogical, TargetFrame, VolumeDim > &map, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim, typename TargetFrame >
tnsr::i< DataVector, VolumeDim, TargetFrame > unnormalized_face_normal (const Mesh< VolumeDim - 1 > &interface_mesh, const domain::CoordinateMapBase< Frame::ElementLogical, TargetFrame, VolumeDim > &map, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim>
void unnormalized_face_normal (gsl::not_null< tnsr::i< DataVector, VolumeDim, Frame::Inertial > * > result, const Mesh< VolumeDim - 1 > &interface_mesh, const ElementMap< VolumeDim, Frame::Grid > &logical_to_grid_map, const domain::CoordinateMapBase< Frame::Grid, Frame::Inertial, VolumeDim > &grid_to_inertial_map, double time, const std::unordered_map< std::string, std::unique_ptr< domain::FunctionsOfTime::FunctionOfTime > > &functions_of_time, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t VolumeDim>
tnsr::i< DataVector, VolumeDim, Frame::Inertialunnormalized_face_normal (const Mesh< VolumeDim - 1 > &interface_mesh, const ElementMap< VolumeDim, Frame::Grid > &logical_to_grid_map, const domain::CoordinateMapBase< Frame::Grid, Frame::Inertial, VolumeDim > &grid_to_inertial_map, double time, const std::unordered_map< std::string, std::unique_ptr< domain::FunctionsOfTime::FunctionOfTime > > &functions_of_time, const Direction< VolumeDim > &direction)
 Compute the outward grid normal on a face of an Element. More...
 
template<size_t Dim, typename Fr >
void domain::jacobian_diagnostic (const gsl::not_null< tnsr::i< DataVector, Dim, Frame::ElementLogical > * > jacobian_diag, const ::Jacobian< DataVector, Dim, Frame::ElementLogical, Fr > &analytic_jacobian, const tnsr::I< DataVector, Dim, Fr > &mapped_coords, const ::Mesh< Dim > &mesh)
 A diagnostic comparing the analytic and numerical Jacobians for a map. More...
 
template<size_t Dim, typename Fr >
tnsr::i< DataVector, Dim, Frame::ElementLogicaldomain::jacobian_diagnostic (const ::Jacobian< DataVector, Dim, Frame::ElementLogical, Fr > &analytic_jacobian, const tnsr::I< DataVector, Dim, Fr > &mapped_coords, const ::Mesh< Dim > &mesh)
 A diagnostic comparing the analytic and numerical Jacobians for a map. More...
 
template<typename DataType , size_t Dim, typename CoordsFrame >
void domain::radially_compressed_coordinates (gsl::not_null< tnsr::I< DataType, Dim, CoordsFrame > * > result, const tnsr::I< DataType, Dim, CoordsFrame > &coordinates, double inner_radius, double outer_radius, CoordinateMaps::Distribution compression)
 Coordinates suitable for visualizing large radii by compressing them logarithmically or inversely. More...
 
template<typename DataType , size_t Dim, typename CoordsFrame >
tnsr::I< DataType, Dim, CoordsFrame > domain::radially_compressed_coordinates (const tnsr::I< DataType, Dim, CoordsFrame > &coordinates, double inner_radius, double outer_radius, CoordinateMaps::Distribution compression)
 Coordinates suitable for visualizing large radii by compressing them logarithmically or inversely. More...
 
template<size_t VolumeDim>
std::array< double, VolumeDim > size_of_element (const ElementMap< VolumeDim, Frame::Inertial > &logical_to_inertial_map)
 Compute the inertial-coordinate size of an element along each of its logical directions. More...
 
template<size_t VolumeDim>
std::array< double, VolumeDim > size_of_element (const ElementMap< VolumeDim, Frame::Grid > &logical_to_grid_map, const domain::CoordinateMapBase< Frame::Grid, Frame::Inertial, VolumeDim > &grid_to_inertial_map, double time, const std::unordered_map< std::string, std::unique_ptr< domain::FunctionsOfTime::FunctionOfTime > > &functions_of_time)
 Compute the inertial-coordinate size of an element along each of its logical directions. More...
 
template<typename VectorType , size_t VolumeDim>
void orient_variables (gsl::not_null< VectorType * > result, const VectorType &variables, const Index< VolumeDim > &extents, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation. More...
 
template<typename VectorType , size_t VolumeDim>
VectorType orient_variables (const VectorType &variables, const Index< VolumeDim > &extents, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation. More...
 
template<typename VectorType , size_t VolumeDim>
void orient_variables_on_slice (gsl::not_null< VectorType * > result, const VectorType &variables_on_slice, const Index< VolumeDim - 1 > &slice_extents, size_t sliced_dim, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation. More...
 
template<typename VectorType , size_t VolumeDim>
VectorType orient_variables_on_slice (const VectorType &variables_on_slice, const Index< VolumeDim - 1 > &slice_extents, size_t sliced_dim, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation. More...
 
template<size_t VolumeDim, typename TagsList >
Variables< TagsList > orient_variables (const Variables< TagsList > &variables, const Index< VolumeDim > &extents, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient variables to the data-storage order of a neighbor element with the given orientation.
 
template<size_t VolumeDim, typename TagsList >
Variables< TagsList > orient_variables_on_slice (const Variables< TagsList > &variables_on_slice, const Index< VolumeDim - 1 > &slice_extents, const size_t sliced_dim, const OrientationMap< VolumeDim > &orientation_of_neighbor)
 Orient variables to the data-storage order of a neighbor element with the given orientation.
 
template<size_t VolumeDim>
void logical_coordinates (gsl::not_null< tnsr::I< DataVector, VolumeDim, Frame::ElementLogical > * > logical_coords, const Mesh< VolumeDim > &mesh)
 Compute the logical coordinates of a Mesh in an Element. More...
 
template<size_t VolumeDim>
tnsr::I< DataVector, VolumeDim, Frame::ElementLogicallogical_coordinates (const Mesh< VolumeDim > &mesh)
 Compute the logical coordinates of a Mesh in an Element. More...
 

Detailed Description

The building blocks used to describe the computational domain.

Description

The VolumeDim-dimensional computational Domain is constructed from a set of non-overlapping Blocks. Each Block is a distorted VolumeDim-dimensional hypercube. Each codimension-1 boundary of a Block is either part of the external boundary of the computational domain, or is identical to a boundary of one other Block. Each Block is subdivided into one or more Elements that may be changed dynamically if AMR is enabled.

Description

The VolumeDim-dimensional computational Domain is constructed from a set of non-overlapping Blocks. Each Block is a distorted VolumeDim-dimensional hypercube. Each codimension-1 boundary of a Block is either part of the external boundary of the computational domain, or is identical to a boundary of one other Block. Each Block is subdivided into one or more Elements that may be changed dynamically if AMR is enabled.

Macro Definition Documentation

◆ INSTANTIATE_MAPS_DATA_TYPE_FUNCTIONS

#define INSTANTIATE_MAPS_DATA_TYPE_FUNCTIONS (   _,
  data 
)

Generate instantiations of member functions of the CoordinateMap class template.

Called as follows:

using Affine2d =
using Affine3d =
((Affine2d), (Affine3d)), (Frame::BlockLogical),
(double, DataVector))
Stores a collection of function values.
Definition: DataVector.hpp:48
Affine map from .
Definition: Affine.hpp:37
Product of two codimension=0 CoordinateMaps.
Definition: ProductMaps.hpp:35
Product of three one-dimensional CoordinateMaps.
Definition: ProductMaps.hpp:89
#define INSTANTIATE_MAPS_DATA_TYPE_FUNCTIONS(_, data)
Generate instantiations of member functions of the CoordinateMap class template.
Definition: MapInstantiationMacros.hpp:149
#define GENERATE_INSTANTIATIONS(INSTANTIATION_MACRO,...)
Macro useful for generating many explicit instantiations of function or class templates.
Definition: GenerateInstantiations.hpp:158
Definition: IndexType.hpp:42
Definition: IndexType.hpp:45
Definition: IndexType.hpp:46

The first tuple passed to GENERATE_INSTANTIATIONS has a bunch of tuples in it that is the list of maps being composed. The reason for defining the type aliases Affine2d and Affine3d is that otherwise the number of maps being composed is calculated incorrectly. The second tuple contains the source frames for the map. The third tuple passed to GENERATE_INSTANTIATIONS contains the target frames to instantiate for, typically Frame::Grid and Frame::Inertial. The last tuple is the data types for which to instantiate the functions, usually double and DataVector.

Instantiates:

  • call_impl
  • inv_jacobian_impl
  • jacobian_impl
  • coords_frame_velocity_jacobians_impl

◆ INSTANTIATE_MAPS_FUNCTIONS

#define INSTANTIATE_MAPS_FUNCTIONS (   MAPS_TUPLE,
  SOURCE_FRAME,
  TARGET_FRAMES_TUPLE,
  TYPES_TUPLE 
)
Value:
SOURCE_FRAME, TARGET_FRAMES_TUPLE) \
GENERATE_INSTANTIATIONS(INSTANTIATE_MAPS_DATA_TYPE_FUNCTIONS, MAPS_TUPLE, \
SOURCE_FRAME, TARGET_FRAMES_TUPLE, TYPES_TUPLE)
#define INSTANTIATE_MAPS_SIMPLE_FUNCTIONS(_, data)
Generate instantiations of member functions of the CoordinateMap class template.
Definition: MapInstantiationMacros.hpp:78

Generate instantiations of member functions of the CoordinateMap class template.

Called as follows:

using Affine2d =
using Affine3d =
INSTANTIATE_MAPS_FUNCTIONS(((Affine2d), (Affine3d)), (Frame::BlockLogical),
(double, DataVector))
#define INSTANTIATE_MAPS_FUNCTIONS(MAPS_TUPLE, SOURCE_FRAME, TARGET_FRAMES_TUPLE, TYPES_TUPLE)
Generate instantiations of member functions of the CoordinateMap class template.
Definition: MapInstantiationMacros.hpp:267

The first tuple passed to GENERATE_INSTANTIATIONS has a bunch of tuples in it that is the list of maps being composed. The reason for defining the type aliases Affine2d and Affine3d is that otherwise the number of maps being composed is calculated incorrectly. The second tuple contains the source frames for the map. The third tuple passed to GENERATE_INSTANTIATIONS contains the frames to instantiate for, typically Frame::Grid and Frame::Inertial.

Instantiates:

  • get_to_grid_frame_impl
  • inverse_impl
  • class CoordinateMap
  • call_impl
  • inv_jacobian_impl
  • jacobian_impl
  • coords_frame_velocity_jacobians_impl

◆ INSTANTIATE_MAPS_SIMPLE_FUNCTIONS

#define INSTANTIATE_MAPS_SIMPLE_FUNCTIONS (   _,
  data 
)

Generate instantiations of member functions of the CoordinateMap class template.

Called as follows:

The first tuple passed to GENERATE_INSTANTIATIONS has a bunch of tuples in it that is the list of maps being composed. The reason for defining the type aliases Affine2d and Affine3d is that otherwise the number of maps being composed is calculated incorrectly. The second tuple contains the source frames for the map. The third tuple passed to GENERATE_INSTANTIATIONS contains the target frames to instantiate for, typically Frame::Grid and Frame::Inertial.

Instantiates:

  • get_to_grid_frame_impl
  • inverse_impl
  • class CoordinateMap

Enumeration Type Documentation

◆ ShellWedges

enum class ShellWedges
strong

The number of wedges to include in the Sphere domain.

Enumerator
All 

Use the entire shell.

FourOnEquator 

Use only the four equatorial wedges.

OneAlongMinusX 

Use only the single wedge along -x.

◆ Side

enum class Side : uint8_t
strong

A label for the side of a manifold.

Lower and Upper are with respect to the logical coordinate whose axis is normal to the side, i.e. beyond the Upper (Lower) side, the logical coordinate is increasing (decreasing).

Self is used to mark when an ElementId does not have a direction.

Currently Direction assumes this enum uses no more than 2 bits.

Function Documentation

◆ block_logical_coordinates()

template<size_t Dim, typename Fr >
auto block_logical_coordinates ( const Domain< Dim > &  domain,
const tnsr::I< DataVector, Dim, Fr > &  x,
double  time = std::numeric_limits< double >::signaling_NaN(),
const domain::FunctionsOfTimeMap functions_of_time = {} 
) -> std::vector< BlockLogicalCoords< Dim > >

Computes the block logical coordinates and the containing BlockId of a set of points, given coordinates in a particular frame.

Details

Returns a std::vector<std::optional<IdPair<BlockId,coords>>>, where the vector runs over the points and is indexed in the same order as the input coordinates x. For each point, the IdPair holds the block logical coords of that point and the BlockId of the Block that contains that point. The std::optional is invalid if the point is not in any Block. If a point is on a shared boundary of two or more Blocks, it is returned only once, and is considered to belong to the Block with the smaller BlockId.

The block_logical_coordinates_single_point function will search the passed in block for the passed in coordinate and return the logical coordinates of that point. It will return a std::nullopt if it can't find the point in that block.

Warning
Since map inverses can involve numerical roundoff error, care must be taken with points on shared block boundaries. They will be assigned to the first block (by block ID) that contains the point within roundoff error. Therefore, be advised to use the logical coordinates returned by this function, which are guaranteed to be in [-1, 1] and can be safely passed along to element_logical_coordinates.
block_logical_coordinates with x in Frame::Distorted ignores all Blocks that lack a distorted frame, and it will return std::nullopt for points that lie outside all distorted-frame-endowed Blocks. This is what is expected for typical use cases. This means that block_logical_coordinates does not assume that grid and distorted frames are equal in Blocks that lack a distorted frame.

◆ block_logical_coordinates_single_point()

template<size_t Dim, typename Fr >
std::optional< tnsr::I< double, Dim, ::Frame::BlockLogical > > block_logical_coordinates_single_point ( const tnsr::I< double, Dim, Fr > &  input_point,
const Block< Dim > &  block,
double  time = std::numeric_limits< double >::signaling_NaN(),
const domain::FunctionsOfTimeMap functions_of_time = {} 
)

Computes the block logical coordinates and the containing BlockId of a set of points, given coordinates in a particular frame.

Details

Returns a std::vector<std::optional<IdPair<BlockId,coords>>>, where the vector runs over the points and is indexed in the same order as the input coordinates x. For each point, the IdPair holds the block logical coords of that point and the BlockId of the Block that contains that point. The std::optional is invalid if the point is not in any Block. If a point is on a shared boundary of two or more Blocks, it is returned only once, and is considered to belong to the Block with the smaller BlockId.

The block_logical_coordinates_single_point function will search the passed in block for the passed in coordinate and return the logical coordinates of that point. It will return a std::nullopt if it can't find the point in that block.

Warning
Since map inverses can involve numerical roundoff error, care must be taken with points on shared block boundaries. They will be assigned to the first block (by block ID) that contains the point within roundoff error. Therefore, be advised to use the logical coordinates returned by this function, which are guaranteed to be in [-1, 1] and can be safely passed along to element_logical_coordinates.
block_logical_coordinates with x in Frame::Distorted ignores all Blocks that lack a distorted frame, and it will return std::nullopt for points that lie outside all distorted-frame-endowed Blocks. This is what is expected for typical use cases. This means that block_logical_coordinates does not assume that grid and distorted frames are equal in Blocks that lack a distorted frame.

◆ corners_for_biradially_layered_domains()

std::vector< std::array< size_t, 8 > > corners_for_biradially_layered_domains ( size_t  number_of_radial_layers,
size_t  number_of_biradial_layers,
bool  include_central_block_lhs,
bool  include_central_block_rhs,
const std::array< size_t, 8 > &  central_block_corners_lhs = { {1, 2, 3, 4, 5, 6, 7, 8}} 
)

The corners for a domain with biradial layers.

Generates the corners for a BBH-like Domain which is made of one or more layers of Blocks fully enveloping two interior volumes. The number_of_radial_layers gives the number of layers that fully envelop each interior volume with six Blocks each. The number_of_biradial_layers gives the number of layers that fully envelop both volumes at once, using ten Blocks per layer as opposed to six. The central_block_corners_lhs are used as seed values to generate the corners for the surrounding Blocks.

◆ corners_for_cylindrical_layered_domains()

std::vector< std::array< size_t, 8 > > corners_for_cylindrical_layered_domains ( size_t  number_of_shells,
size_t  number_of_discs 
)

The corners for a cylindrical domain split into discs with radial shells.

Generates the corners for a Domain which is made of one or more stacked discs consisting of layers of Blocks enveloping an interior square prism. The number_of_shells specifies how many of these layers of Blocks to have in each disc.

The number_of_discs specifies how many discs make up the domain. The very basic cylinder with one shell and one layer serves as a base to generate the corners for subsequent shells first and discs second.

◆ corners_for_radially_layered_domains()

std::vector< std::array< size_t, 8 > > corners_for_radially_layered_domains ( size_t  number_of_layers,
bool  include_central_block,
const std::array< size_t, 8 > &  central_block_corners = {{1, 2, 3, 4, 5, 6, 7, 8}},
ShellWedges  which_wedges = ShellWedges::All 
)

The corners for a domain with radial layers.

Generates the corners for a Domain which is made of one or more layers of Blocks fully enveloping an interior volume, e.g. Sphere.

Parameters
number_of_layersspecifies how many layers of Blocks to have in the final domain.
include_central_blockset to true where the interior volume is filled with a central Block, and false where the interior volume is left empty.
central_block_cornersare used as seed values to generate the corners for the surrounding Blocks.
which_wedgescan be used to exclude a subset of the wedges.

◆ corners_for_rectilinear_domains()

template<size_t VolumeDim>
auto corners_for_rectilinear_domains ( const Index< VolumeDim > &  domain_extents,
const std::vector< Index< VolumeDim > > &  block_indices_to_exclude = {} 
) -> std::vector< std::array< size_t, two_to_the(VolumeDim)> >

The corners for a rectilinear domain made of n-cubes.

The domain_extents argument holds the number of blocks to have in each dimension. The blocks all have aligned orientations by construction. The block_indices_to_exclude argument allows the user to selectively exclude blocks from the resulting domain. This allows for the creation of non-trivial shapes such as the net for a tesseract.

◆ cyl_wedge_coord_map_center_blocks()

auto cyl_wedge_coord_map_center_blocks ( double  inner_radius,
double  lower_z_bound,
double  upper_z_bound,
bool  use_equiangular_map,
const std::vector< double > &  partitioning_in_z = {},
const std::vector< domain::CoordinateMaps::Distribution > &  distribution_in_z = {domain::CoordinateMaps::Distribution::Linear},
CylindricalDomainParityFlip  parity_flip = CylindricalDomainParityFlip::none 
) -> std::vector< domain::CoordinateMaps::ProductOf3Maps< domain::CoordinateMaps::Interval, domain::CoordinateMaps::Interval, domain::CoordinateMaps::Interval > >

Same as cyl_wedge_coordinate_maps, but only the center square blocks,.

If CylindricalDomainParityFlip::z_direction is specified, then the returned maps describe a cylinder with lower_z_bound corresponding to logical coordinate upper_zeta and upper_z_bound corresponding to logical coordinate lower_zeta, and thus the resulting maps are left-handed. CylindricalDomainParityFlip::z_direction is therefore useful only when composing with another map that is also left-handed, so that the composed coordinate system is right-handed.

Returned as a vector of the coordinate maps so that they can be composed with other maps later.

◆ cyl_wedge_coord_map_surrounding_blocks()

auto cyl_wedge_coord_map_surrounding_blocks ( double  inner_radius,
double  outer_radius,
double  lower_z_bound,
double  upper_z_bound,
bool  use_equiangular_map,
double  inner_circularity,
const std::vector< double > &  radial_partitioning = {},
const std::vector< double > &  partitioning_in_z = {},
const std::vector< domain::CoordinateMaps::Distribution > &  radial_distribution = {domain::CoordinateMaps::Distribution::Linear},
const std::vector< domain::CoordinateMaps::Distribution > &  distribution_in_z = {domain::CoordinateMaps::Distribution::Linear},
CylindricalDomainParityFlip  parity_flip = CylindricalDomainParityFlip::none 
) -> std::vector< domain::CoordinateMaps::ProductOf2Maps< domain::CoordinateMaps::Wedge< 2 >, domain::CoordinateMaps::Interval > >

Same as cyl_wedge_coordinate_maps, but only the surrounding wedge blocks.

If CylindricalDomainParityFlip::z_direction is specified, then the returned maps describe a cylinder with lower_z_bound corresponding to logical coordinate upper_zeta and upper_z_bound corresponding to logical coordinate lower_zeta, and thus the resulting maps are left-handed. CylindricalDomainParityFlip::z_direction is therefore useful only when composing with another map that is also left-handed, so that the composed coordinate system is right-handed.

Returned as a vector of the coordinate maps so that they can be composed with other maps later.

◆ cyl_wedge_coordinate_maps()

template<typename TargetFrame >
auto cyl_wedge_coordinate_maps ( double  inner_radius,
double  outer_radius,
double  lower_z_bound,
double  upper_z_bound,
bool  use_equiangular_map,
const std::vector< double > &  radial_partitioning = {},
const std::vector< double > &  partitioning_in_z = {},
const std::vector< domain::CoordinateMaps::Distribution > &  radial_distribution = {domain::CoordinateMaps::Distribution::Linear},
const std::vector< domain::CoordinateMaps::Distribution > &  distribution_in_z = {domain::CoordinateMaps::Distribution::Linear} 
) -> std::vector< std::unique_ptr< domain::CoordinateMapBase< Frame::BlockLogical, TargetFrame, 3 > > >

These are the CoordinateMaps used in the Cylinder DomainCreator.

The radial_partitioning specifies the radial boundaries of sub-shells between inner_radius and outer_radius, while partitioning_in_z specifies the z-boundaries, splitting the cylinder into stacked 3-dimensional disks. The circularity of the shell wedges changes from 0 to 1 within the innermost sub-shell.

Set the radial_distribution to select the radial distribution of grid points in the cylindrical shells. The innermost shell must have domain::CoordinateMaps::Distribution::Linear because it changes the circularity. The distribution along the z-axis for each circular disc is specified through distribution_in_z.

◆ discrete_rotation()

template<size_t VolumeDim>
std::array< size_t, two_to_the(VolumeDim)> discrete_rotation ( const OrientationMap< VolumeDim > &  orientation,
const std::array< size_t, two_to_the(VolumeDim)> &  corners_of_aligned 
)

Permutes the corner numbers of an n-cube.

Returns the correct ordering of global corner numbers for a rotated block in an otherwise aligned edifice of blocks, given the OrientationMap a block aligned with the edifice has relative to this one, and given the corner numbering the rotated block would have if it were aligned. This is useful in creating domains for testing purposes, e.g. RotatedIntervals, RotatedRectangles, and RotatedBricks.

◆ discrete_rotation_jacobian()

template<size_t VolumeDim>
tnsr::Ij< double, VolumeDim, Frame::NoFrame > discrete_rotation_jacobian ( const OrientationMap< VolumeDim > &  orientation)

Computes the Jacobian of the transformation that is computed by discrete_rotation()

Note
This always returns a double because the Jacobian is spatially constant.

◆ element_logical_coordinates()

template<size_t Dim>
auto element_logical_coordinates ( const std::vector< ElementId< Dim > > &  element_ids,
const std::vector< BlockLogicalCoords< Dim > > &  block_coord_holders 
) -> std::unordered_map< ElementId< Dim >, ElementLogicalCoordHolder< Dim > >

Given a set of points in block logical coordinates and their BlockIds, as returned from the function block_logical_coordinates, determines which Elements in a list of ElementIds contains each point, and determines the element logical coordinates of each point.

Details

Returns a std::unordered_map from ElementIds to ElementLogicalCoordHolders. It is expected that only a subset of the points will be found in the given Elements. Boundary points: If a point is on the boundary of an Element, it is considered contained in that Element only if it is on the lower bound of the Element, or if it is on the upper bound of the element and that upper bound coincides with the upper bound of the containing Block. This means that each boundary point is contained in one and only one Element. We assume that the input block_coord_holders associates a point on a Block boundary with only a single Block, the one with the smaller BlockId, which is always the lower-bounding Block.

<--- Block 0 ---> <--- Block 1 --->
| | | | |
P_0 E0 P_1 E1 P_2 E2 P_3 E3 P_4
| | | | |
For example, the above 1D diagram shows four Elements labeled E0
through E3, and five boundary points labeled P_0 through P_4 (where
P_0 and P_4 are external boundaries). There are two Blocks. This
algorithm assigns each boundary point to one and only one Element as
follows:
P_0 -> E0
P_1 -> E1
P_2 -> E1 (Note: block_coord_holders includes P_2 only in Block 0)
P_3 -> E3
P_4 -> E3
A Block<VolumeDim> is a region of a VolumeDim-dimensional computational domain that defines the root ...
Definition: Block.hpp:45
A spectral element with knowledge of its neighbors.
Definition: Element.hpp:29

◆ frustum_coordinate_maps()

std::vector< domain::CoordinateMaps::Frustum > frustum_coordinate_maps ( double  length_inner_cube,
double  length_outer_cube,
bool  equiangular_map_at_outer,
bool  equiangular_map_at_inner,
const std::array< double, 3 > &  origin_preimage = {{0.0, 0.0, 0.0}},
domain::CoordinateMaps::Distribution  radial_distribution = domain::CoordinateMaps::Distribution::Linear,
std::optional< double >  distribution_value = std::nullopt,
double  sphericity = 0.0,
double  opening_angle = M_PI_2 
)

These are the ten Frustums used in the DomainCreators for binary compact objects. The Frustums partition the volume defined by two bounding surfaces: The inner surface is the surface of the two joined inner cubes enveloping the two compact objects, while the outer is the surface of the outer cube.

Parameters
length_inner_cubeThe side length of the cubes enveloping the two shells.
length_outer_cubeThe side length of the outer cube.
equiangular_map_at_outerWhether to apply a tangent map in the angular directions at the outer boundary.
equiangular_map_at_innerWhether to apply a tangent map in the angular directions at the inner boundary.
origin_preimageThe center of the two joined inner cubes is moved away from the origin and to this point, origin_preimage.
radial_distributionThe gridpoint distribution in the radial direction, possibly dependent on the value passed to distribution_value.
distribution_valueUsed by radial_distribution.
See also
Frustum for details.
Parameters
sphericityDetermines whether the outer surface is a cube (value of 0), a sphere (value of 1) or somewhere in between.
opening_angledetermines the gridpoint distribution used in the Frustums such that they conform to the outer sphere of Wedges with the same value for opening_angle.

◆ functions_of_time_are_ready_algorithm_callback()

template<typename CacheTag , size_t Dim, typename Metavariables , typename ArrayIndex , typename Component >
bool domain::functions_of_time_are_ready_algorithm_callback ( Parallel::GlobalCache< Metavariables > &  cache,
const ArrayIndex &  array_index,
const Component *  component_p,
const double  time,
const std::optional< std::unordered_set< std::string > > &  functions_to_check = std::nullopt 
)

Check that functions of time are up-to-date.

Check that functions of time in CacheTag with names in functions_to_check are ready at time time. If functions_to_check is a std::nullopt, checks all functions in CacheTag. If any function is not ready, schedules a Parallel::PerformAlgorithmCallback or Parallel::Actions::PerformAlgorithmOnElement<false> callback with the GlobalCache.

◆ functions_of_time_are_ready_simple_action_callback()

template<typename CacheTag , typename SimpleAction , typename Metavariables , typename ArrayIndex , typename Component , typename... Args>
bool domain::functions_of_time_are_ready_simple_action_callback ( Parallel::GlobalCache< Metavariables > &  cache,
const ArrayIndex &  array_index,
const Component *  component_p,
const double  time,
const std::optional< std::unordered_set< std::string > > &  functions_to_check,
Args &&...  args 
)

Check that functions of time are up-to-date.

Check that functions of time in CacheTag with names in functions_to_check are ready at time time. If functions_to_check is a std::nullopt, checks all functions in CacheTag. If any function is not ready, schedules a Parallel::SimpleActionCallback with the GlobalCache which calls the simple action passed in as a template parameter. The Args are forwareded to the callback.

◆ functions_of_time_are_ready_threaded_action_callback()

template<typename CacheTag , typename ThreadedAction , typename Metavariables , typename ArrayIndex , typename Component , typename... Args>
bool domain::functions_of_time_are_ready_threaded_action_callback ( Parallel::GlobalCache< Metavariables > &  cache,
const ArrayIndex &  array_index,
const Component *  component_p,
const double  time,
const std::optional< std::unordered_set< std::string > > &  functions_to_check,
Args &&...  args 
)

Check that functions of time are up-to-date.

Check that functions of time in CacheTag with names in functions_to_check are ready at time time. If functions_to_check is a std::nullopt, checks all functions in CacheTag. If any function is not ready, schedules a Parallel::ThreadedActionCallback with the GlobalCache which calls the threaded action passed in as a template parameter. The Args are forwareded to the callback.

◆ index_to_slice_at()

template<size_t Dim>
size_t index_to_slice_at ( const Index< Dim > &  extents,
const Direction< Dim > &  direction,
const size_t  offset = 0 
)

Finds the index in the perpendicular dimension of an element boundary.

Optionally provide an offset to find an index offset from the element boundary.

◆ interface_logical_coordinates()

template<size_t VolumeDim>
tnsr::I< DataVector, VolumeDim, Frame::ElementLogical > interface_logical_coordinates ( const Mesh< VolumeDim - 1 > &  mesh,
const Direction< VolumeDim > &  direction 
)

Defines functions interface_logical_coordinates.

Compute the logical coordinates on a face of an Element.

Returns: element logical-frame vector holding coordinates

Example

const Mesh<2> mesh_3d_zbdry{
{{5, 3}}, Spectral::Basis::Legendre, Spectral::Quadrature::GaussLobatto};
const auto x_3d_lb_zeta = map_3d(
A particular Side along a particular coordinate Axis.
Definition: Direction.hpp:24
Holds the number of grid points, basis, and quadrature in each direction of the computational grid.
Definition: Mesh.hpp:53
tnsr::I< DataVector, VolumeDim, Frame::ElementLogical > interface_logical_coordinates(const Mesh< VolumeDim - 1 > &mesh, const Direction< VolumeDim > &direction)
Defines functions interface_logical_coordinates.

◆ jacobian_diagnostic() [1/3]

template<size_t Dim, typename Fr >
tnsr::i< DataVector, Dim, Frame::ElementLogical > domain::jacobian_diagnostic ( const ::Jacobian< DataVector, Dim, Frame::ElementLogical, Fr > &  analytic_jacobian,
const tnsr::I< DataVector, Dim, Fr > &  mapped_coords,
const ::Mesh< Dim > &  mesh 
)

A diagnostic comparing the analytic and numerical Jacobians for a map.

Specifically, returns

Ci^=1i|i^xi|i|Di^xi|

, where xi^ are the logical coordinates, xi are the coordinates in the target frame, i^xi is the analytic Jacobian, and Di^xi is the numerical Jacobian.

Note
This function accepts the analytic jacobian, mapped coordinates, and mesh as a parameter. The numeric jacobian is computed internally by differentiating the mapped coordinates with respect to the logical coordinates.

◆ jacobian_diagnostic() [2/3]

template<size_t Dim, typename Fr >
void domain::jacobian_diagnostic ( const gsl::not_null< tnsr::i< DataVector, Dim, Frame::ElementLogical > * >  jacobian_diag,
const ::Jacobian< DataVector, Dim, Frame::ElementLogical, Fr > &  analytic_jacobian,
const tnsr::I< DataVector, Dim, Fr > &  mapped_coords,
const ::Mesh< Dim > &  mesh 
)

A diagnostic comparing the analytic and numerical Jacobians for a map.

Specifically, returns

Ci^=1i|i^xi|i|Di^xi|

, where xi^ are the logical coordinates, xi are the coordinates in the target frame, i^xi is the analytic Jacobian, and Di^xi is the numerical Jacobian.

Note
This function accepts the analytic jacobian, mapped coordinates, and mesh as a parameter. The numeric jacobian is computed internally by differentiating the mapped coordinates with respect to the logical coordinates.

◆ jacobian_diagnostic() [3/3]

template<size_t Dim, typename Fr >
void domain::jacobian_diagnostic ( const gsl::not_null< tnsr::i< DataVector, Dim, typename Frame::ElementLogical > * >  jacobian_diag,
const Jacobian< DataVector, Dim, typename Frame::ElementLogical, Fr > &  analytic_jacobian,
const TensorMetafunctions::prepend_spatial_index< tnsr::I< DataVector, Dim, Fr >, Dim, UpLo::Lo, typename Frame::ElementLogical > &  numeric_jacobian_transpose 
)

A diagnostic comparing the analytic and numerical Jacobians for a map.

Specifically, returns

Ci^=1i|i^xi|i|Di^xi|

, where xi^ are the logical coordinates, xi are the coordinates in the target frame, i^xi is the analytic Jacobian, and Di^xi is the numerical Jacobian.

Note
This function accepts the transpose of the numeric Jacobian as a parameter, since the numeric Jacobian will typically be computed via logical_partial_derivative(), which prepends the logical (source frame) derivative index. Tensors of type Jacobian, in contrast, have the derivative index second.

◆ logical_coordinates() [1/2]

template<size_t VolumeDim>
tnsr::I< DataVector, VolumeDim, Frame::ElementLogical > logical_coordinates ( const Mesh< VolumeDim > &  mesh)

Compute the logical coordinates of a Mesh in an Element.

Details

The logical coordinates are the collocation points associated with the Spectral::Basis and Spectral::Quadrature of the mesh. The Spectral::Basis determines the domain of the logical coordinates, while the Spectral::Quadrature determines their distribution. For Legendre or Chebyshev bases, the logical coordinates are in the interval [1,1]. These bases may have either GaussLobatto or Gauss quadrature, which are not uniformly distributed, and either include (GaussLobatto) or do not include (Gauss) the end points. For the FiniteDifference basis, the logical coordinates are again in the interval [1,1]. This basis may have either FaceCentered or CellCentered quadrature, which are uniformly distributed, and either include (FaceCentered) or do not include (CellCentered) the end points. The SphericalHarmonic basis corresponds to the spherical coordinates (θ,ϕ) where the polar angle θ is in the interval [0,π] and the azimuth ϕ is in the interval [0,2π]. The polar angle has Gauss quadrature corresponding to the Legendre Gauss points of cosθ (and thus have no points at the poles), while the azimuth has Equiangular quadrature which are distributed uniformly including the left endpoint, but not the right.

Example

const Mesh<3> mesh_3d{{{5, 3, 2}},
Spectral::Basis::Legendre,
Spectral::Quadrature::GaussLobatto};
const domain::CoordinateMaps::Affine x_map{-1.0, 1.0, -3.0, 7.0};
const domain::CoordinateMaps::Affine y_map{-1.0, 1.0, -13.0, 47.0};
const domain::CoordinateMaps::Affine z_map{-1.0, 1.0, -32.0, 74.0};
const auto map_3d =
domain::make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
Affine3d{x_map, y_map, z_map});
const auto x_3d = map_3d(logical_coordinates(mesh_3d));
void logical_coordinates(gsl::not_null< tnsr::I< DataVector, VolumeDim, Frame::ElementLogical > * > logical_coords, const Mesh< VolumeDim > &mesh)
Compute the logical coordinates of a Mesh in an Element.

◆ logical_coordinates() [2/2]

template<size_t VolumeDim>
void logical_coordinates ( gsl::not_null< tnsr::I< DataVector, VolumeDim, Frame::ElementLogical > * >  logical_coords,
const Mesh< VolumeDim > &  mesh 
)

Compute the logical coordinates of a Mesh in an Element.

Details

The logical coordinates are the collocation points associated with the Spectral::Basis and Spectral::Quadrature of the mesh. The Spectral::Basis determines the domain of the logical coordinates, while the Spectral::Quadrature determines their distribution. For Legendre or Chebyshev bases, the logical coordinates are in the interval [1,1]. These bases may have either GaussLobatto or Gauss quadrature, which are not uniformly distributed, and either include (GaussLobatto) or do not include (Gauss) the end points. For the FiniteDifference basis, the logical coordinates are again in the interval [1,1]. This basis may have either FaceCentered or CellCentered quadrature, which are uniformly distributed, and either include (FaceCentered) or do not include (CellCentered) the end points. The SphericalHarmonic basis corresponds to the spherical coordinates (θ,ϕ) where the polar angle θ is in the interval [0,π] and the azimuth ϕ is in the interval [0,2π]. The polar angle has Gauss quadrature corresponding to the Legendre Gauss points of cosθ (and thus have no points at the poles), while the azimuth has Equiangular quadrature which are distributed uniformly including the left endpoint, but not the right.

Example

const Mesh<3> mesh_3d{{{5, 3, 2}},
Spectral::Basis::Legendre,
Spectral::Quadrature::GaussLobatto};
const domain::CoordinateMaps::Affine x_map{-1.0, 1.0, -3.0, 7.0};
const domain::CoordinateMaps::Affine y_map{-1.0, 1.0, -13.0, 47.0};
const domain::CoordinateMaps::Affine z_map{-1.0, 1.0, -32.0, 74.0};
const auto map_3d =
domain::make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
Affine3d{x_map, y_map, z_map});
const auto x_3d = map_3d(logical_coordinates(mesh_3d));

◆ maps_for_rectilinear_domains()

template<typename TargetFrame , size_t VolumeDim>
auto maps_for_rectilinear_domains ( const Index< VolumeDim > &  domain_extents,
const std::array< std::vector< double >, VolumeDim > &  block_demarcations,
const std::vector< Index< VolumeDim > > &  block_indices_to_exclude = {},
const std::vector< OrientationMap< VolumeDim > > &  orientations_of_all_blocks = {},
bool  use_equiangular_map = false 
) -> std::vector< std::unique_ptr< domain::CoordinateMapBase< Frame::BlockLogical, TargetFrame, VolumeDim > > >

The CoordinateMaps for a rectilinear domain of n-cubes.

Allows for both Affine and Equiangular maps.

◆ maximum_number_of_neighbors()

constexpr size_t maximum_number_of_neighbors ( const size_t  dim)
constexpr

Returns the maximum number of neighbors an element can have in dim dimensions.

Note
Assumes a maximum 2-to-1 refinement between two adjacent Elements.

◆ maximum_number_of_neighbors_per_direction()

constexpr size_t maximum_number_of_neighbors_per_direction ( const size_t  dim)
constexpr

Returns the maximum number of neighbors in each direction an element can have in dim dimensions.

Note
Assumes a maximum 2-to-1 refinement between two adjacent Elements.

◆ orient_variables() [1/2]

template<typename VectorType , size_t VolumeDim>
VectorType orient_variables ( const VectorType &  variables,
const Index< VolumeDim > &  extents,
const OrientationMap< VolumeDim > &  orientation_of_neighbor 
)

Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation.

The vector may represent more than one tensor component over the grid represented by extents.

Warning
The result is not resized and assumes to be of the correct size (variables.size()).

In most cases the Variables version of orient_variables should be called. However, in some cases the tags and thus the type of the data being sent is determined at runtime. In these cases the std::vector version of orient_variables is useful. A concrete example of this is when hybridizing DG with finite difference methods, where sometimes the data sent is both the variables for reconstruction and the fluxes for either the DG or finite difference scheme, while at other points only one of these three is sent.

◆ orient_variables() [2/2]

template<typename VectorType , size_t VolumeDim>
void orient_variables ( gsl::not_null< VectorType * >  result,
const VectorType &  variables,
const Index< VolumeDim > &  extents,
const OrientationMap< VolumeDim > &  orientation_of_neighbor 
)

Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation.

The vector may represent more than one tensor component over the grid represented by extents.

Warning
The result is not resized and assumes to be of the correct size (variables.size()).

In most cases the Variables version of orient_variables should be called. However, in some cases the tags and thus the type of the data being sent is determined at runtime. In these cases the std::vector version of orient_variables is useful. A concrete example of this is when hybridizing DG with finite difference methods, where sometimes the data sent is both the variables for reconstruction and the fluxes for either the DG or finite difference scheme, while at other points only one of these three is sent.

◆ orient_variables_on_slice() [1/2]

template<typename VectorType , size_t VolumeDim>
VectorType orient_variables_on_slice ( const VectorType &  variables_on_slice,
const Index< VolumeDim - 1 > &  slice_extents,
size_t  sliced_dim,
const OrientationMap< VolumeDim > &  orientation_of_neighbor 
)

Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation.

The vector may represent more than one tensor component over the grid represented by extents.

Warning
The result is not resized and assumes to be of the correct size (variables.size()).

In most cases the Variables version of orient_variables should be called. However, in some cases the tags and thus the type of the data being sent is determined at runtime. In these cases the std::vector version of orient_variables is useful. A concrete example of this is when hybridizing DG with finite difference methods, where sometimes the data sent is both the variables for reconstruction and the fluxes for either the DG or finite difference scheme, while at other points only one of these three is sent.

◆ orient_variables_on_slice() [2/2]

template<typename VectorType , size_t VolumeDim>
void orient_variables_on_slice ( gsl::not_null< VectorType * >  result,
const VectorType &  variables_on_slice,
const Index< VolumeDim - 1 > &  slice_extents,
size_t  sliced_dim,
const OrientationMap< VolumeDim > &  orientation_of_neighbor 
)

Orient a DataVector, ComplexDataVector, std::vector<double>, or std::vector<std::complex<double>> to the data-storage order of a neighbor element with the given orientation.

The vector may represent more than one tensor component over the grid represented by extents.

Warning
The result is not resized and assumes to be of the correct size (variables.size()).

In most cases the Variables version of orient_variables should be called. However, in some cases the tags and thus the type of the data being sent is determined at runtime. In these cases the std::vector version of orient_variables is useful. A concrete example of this is when hybridizing DG with finite difference methods, where sometimes the data sent is both the variables for reconstruction and the fluxes for either the DG or finite difference scheme, while at other points only one of these three is sent.

◆ orientations_for_sphere_wrappings()

std::array< OrientationMap< 3 >, 6 > orientations_for_sphere_wrappings ( )

An array of the orientations of the six blocks that make up a Sphere.

A Block or Blocks can be wrapped in an outer layer of Blocks surrounding the original Block(s). In the BBH Domain, this occurs several times, using both Wedges and Frustums. This standardizes the ordering of the orientations for both.

◆ radially_compressed_coordinates() [1/2]

template<typename DataType , size_t Dim, typename CoordsFrame >
tnsr::I< DataType, Dim, CoordsFrame > domain::radially_compressed_coordinates ( const tnsr::I< DataType, Dim, CoordsFrame > &  coordinates,
double  inner_radius,
double  outer_radius,
CoordinateMaps::Distribution  compression 
)

Coordinates suitable for visualizing large radii by compressing them logarithmically or inversely.

Rescales the coordinates x as

(1)x^=r^rx,

for r>r0, where r=x2+y2+z2 is the Euclidean coordinate radius and r0 is the inner_radius. The coordinates are compressed from r[r0,r1] to r^[r0,r^1], where the outer_radius r1 can be incomprehensibly large like 109 and the compressed outer radius r^1 is reasonably small so it can be visualized well. We choose

(2)r^1=r0log10(r1)

so the compressed outer radius is a multiple of the inner radius and increases with the outer radius as well, but exponentials are tamed.

The radial compression map r^(r) is just the inverse of the domain::CoordinateMaps::Interval map, which is also used to distribute grid points radially. Therefore, radial grid points will be distributed linearly in the radially compressed coordinates if you use the same compression distribution that you used to distribute radial grid points in the CoordsFrame.

See also
domain::CoordinateMaps::Interval

◆ radially_compressed_coordinates() [2/2]

template<typename DataType , size_t Dim, typename CoordsFrame >
void domain::radially_compressed_coordinates ( gsl::not_null< tnsr::I< DataType, Dim, CoordsFrame > * >  result,
const tnsr::I< DataType, Dim, CoordsFrame > &  coordinates,
double  inner_radius,
double  outer_radius,
CoordinateMaps::Distribution  compression 
)

Coordinates suitable for visualizing large radii by compressing them logarithmically or inversely.

Rescales the coordinates x as

(3)x^=r^rx,

for r>r0, where r=x2+y2+z2 is the Euclidean coordinate radius and r0 is the inner_radius. The coordinates are compressed from r[r0,r1] to r^[r0,r^1], where the outer_radius r1 can be incomprehensibly large like 109 and the compressed outer radius r^1 is reasonably small so it can be visualized well. We choose

(4)r^1=r0log10(r1)

so the compressed outer radius is a multiple of the inner radius and increases with the outer radius as well, but exponentials are tamed.

The radial compression map r^(r) is just the inverse of the domain::CoordinateMaps::Interval map, which is also used to distribute grid points radially. Therefore, radial grid points will be distributed linearly in the radially compressed coordinates if you use the same compression distribution that you used to distribute radial grid points in the CoordsFrame.

See also
domain::CoordinateMaps::Interval

◆ rectilinear_domain()

template<size_t VolumeDim>
Domain< VolumeDim > rectilinear_domain ( const Index< VolumeDim > &  domain_extents,
const std::array< std::vector< double >, VolumeDim > &  block_demarcations,
const std::vector< Index< VolumeDim > > &  block_indices_to_exclude = {},
const std::vector< OrientationMap< VolumeDim > > &  orientations_of_all_blocks = {},
const std::array< bool, VolumeDim > &  dimension_is_periodic = make_array< VolumeDim >(false),
const std::vector< PairOfFaces > &  identifications = {},
bool  use_equiangular_map = false 
)

Create a rectilinear Domain of multicubes.

Details

Useful for constructing domains for testing non-trivially connected rectilinear domains made up of cubes. We refer to a domain of this type as an edifice. The domain_extents provides the size (in the number of blocks) of the initial aligned edifice to construct. The block_indices_to_exclude parameter is used in refining the shape of the edifice from a cube to sometime more non-trivial, such as an L-shape or the net of a tesseract. The block_demarcations and use_equiangular_map parameters determine the CoordinateMaps to be used. orientations_of_all_blocks contains the OrientationMap of the edifice relative to each block.

The identifications parameter is used when identifying the faces of blocks in an edifice. This is used to identify the 1D boundaries in the 2D net for a 3D cube to construct a domain with topology S2. Note: If the user wishes to rotate the blocks as well as manually identify their faces, the user must provide the PairOfFaces corresponding to the rotated corners.

◆ set_internal_boundaries()

template<size_t VolumeDim>
void set_internal_boundaries ( gsl::not_null< std::vector< DirectionMap< VolumeDim, BlockNeighbor< VolumeDim > > > * >  neighbors_of_all_blocks,
const std::vector< std::unique_ptr< domain::CoordinateMapBase< Frame::BlockLogical, Frame::Inertial, VolumeDim > > > &  maps 
)

Sets up the BlockNeighbors using the corner numbering scheme implied by the maps provided by the user to deduce the correct neighbors and orientations.

Warning
Does not set up periodic boundary conditions.

◆ size_of_element() [1/2]

template<size_t VolumeDim>
std::array< double, VolumeDim > size_of_element ( const ElementMap< VolumeDim, Frame::Grid > &  logical_to_grid_map,
const domain::CoordinateMapBase< Frame::Grid, Frame::Inertial, VolumeDim > &  grid_to_inertial_map,
double  time,
const std::unordered_map< std::string, std::unique_ptr< domain::FunctionsOfTime::FunctionOfTime > > &  functions_of_time 
)

Compute the inertial-coordinate size of an element along each of its logical directions.

For each logical direction, compute the distance (in inertial coordinates) between the element's lower and upper faces in that logical direction. The distance is measured between centers of the faces, with the centers defined in the logical coordinates. Note that for curved elements, this is an approximate measurement of size.

Details

Because this quantity is defined in terms of specific coordinates, it is not well represented by a Tensor, so we use a std::array.

◆ size_of_element() [2/2]

template<size_t VolumeDim>
std::array< double, VolumeDim > size_of_element ( const ElementMap< VolumeDim, Frame::Inertial > &  logical_to_inertial_map)

Compute the inertial-coordinate size of an element along each of its logical directions.

For each logical direction, compute the distance (in inertial coordinates) between the element's lower and upper faces in that logical direction. The distance is measured between centers of the faces, with the centers defined in the logical coordinates. Note that for curved elements, this is an approximate measurement of size.

Details

Because this quantity is defined in terms of specific coordinates, it is not well represented by a Tensor, so we use a std::array.

◆ sph_wedge_coordinate_maps()

std::vector< domain::CoordinateMaps::Wedge< 3 > > sph_wedge_coordinate_maps ( double  inner_radius,
double  outer_radius,
double  inner_sphericity,
double  outer_sphericity,
bool  use_equiangular_map,
const std::optional< std::pair< double, std::array< double, 3 > > > &  offset_options = std::nullopt,
bool  use_half_wedges = false,
const std::vector< double > &  radial_partitioning = {},
const std::vector< domain::CoordinateMaps::Distribution > &  radial_distribution = {domain::CoordinateMaps::Distribution::Linear},
ShellWedges  which_wedges = ShellWedges::All,
double  opening_angle = M_PI_2 
)

These are the CoordinateMaps of the Wedge<3>s used in the Sphere and binary compact object DomainCreators. This function can also be used to wrap the Sphere in a cube made of six Wedge<3>s.

Parameters
inner_radiusRadius of the inner boundary of the shell, or the radius circumscribing the inner cube of a sphere.
outer_radiusOuter radius of the shell or sphere.
inner_sphericitySpecifies if the wedges form a spherical inner boundary (1.0) or a cubical inner boundary (0.0).
outer_sphericitySpecifies if the wedges form a spherical outer boundary (1.0) or a cubical outer boundary (0.0).
offset_optionsA pair of values with the first being half the length of the cube that would form the outer boundary and the second being the offset to apply to the wedges.
use_equiangular_mapToggles the equiangular map of the Wedge map.
use_half_wedgesWhen true, the wedges in the +z,-z,+y,-y directions are cut in half along their xi-axes. The resulting ten CoordinateMaps are used for the outermost Blocks of the BBH Domain.
radial_partitioningSpecifies the radial boundaries of sub-shells between inner_radius and outer_radius. If the inner and outer sphericities are different, the innermost shell does the transition.
radial_distributionSelect the radial distribution of grid points in the spherical shells.
which_wedgesSelect a subset of wedges.
opening_anglesets the combined opening angle of the two half wedges that open up along the y-z plane. The endcap wedges are then given an angle of pi minus this opening angle. This parameter only has an effect if use_half_wedges is set to true.

◆ unnormalized_face_normal() [1/8]

template<size_t VolumeDim, typename TargetFrame >
void unnormalized_face_normal ( const gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * >  result,
const Mesh< VolumeDim - 1 > &  interface_mesh,
const InverseJacobian< DataVector, VolumeDim, Frame::ElementLogical, TargetFrame > &  inv_jacobian_on_interface,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =
void unnormalized_face_normal(const gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * > result, const Mesh< VolumeDim - 1 > &interface_mesh, const InverseJacobian< DataVector, VolumeDim, Frame::ElementLogical, TargetFrame > &inv_jacobian_on_interface, const Direction< VolumeDim > &direction)
Compute the outward grid normal on a face of an Element.

◆ unnormalized_face_normal() [2/8]

template<size_t VolumeDim, typename TargetFrame >
tnsr::i< DataVector, VolumeDim, TargetFrame > unnormalized_face_normal ( const Mesh< VolumeDim - 1 > &  interface_mesh,
const domain::CoordinateMapBase< Frame::ElementLogical, TargetFrame, VolumeDim > &  map,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =

◆ unnormalized_face_normal() [3/8]

template<size_t VolumeDim>
tnsr::i< DataVector, VolumeDim, Frame::Inertial > unnormalized_face_normal ( const Mesh< VolumeDim - 1 > &  interface_mesh,
const ElementMap< VolumeDim, Frame::Grid > &  logical_to_grid_map,
const domain::CoordinateMapBase< Frame::Grid, Frame::Inertial, VolumeDim > &  grid_to_inertial_map,
double  time,
const std::unordered_map< std::string, std::unique_ptr< domain::FunctionsOfTime::FunctionOfTime > > &  functions_of_time,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =

◆ unnormalized_face_normal() [4/8]

template<size_t VolumeDim, typename TargetFrame >
tnsr::i< DataVector, VolumeDim, TargetFrame > unnormalized_face_normal ( const Mesh< VolumeDim - 1 > &  interface_mesh,
const ElementMap< VolumeDim, TargetFrame > &  map,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =

◆ unnormalized_face_normal() [5/8]

template<size_t VolumeDim, typename TargetFrame >
tnsr::i< DataVector, VolumeDim, TargetFrame > unnormalized_face_normal ( const Mesh< VolumeDim - 1 > &  interface_mesh,
const InverseJacobian< DataVector, VolumeDim, Frame::ElementLogical, TargetFrame > &  inv_jacobian_on_interface,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =

◆ unnormalized_face_normal() [6/8]

template<size_t VolumeDim>
void unnormalized_face_normal ( gsl::not_null< tnsr::i< DataVector, VolumeDim, Frame::Inertial > * >  result,
const Mesh< VolumeDim - 1 > &  interface_mesh,
const ElementMap< VolumeDim, Frame::Grid > &  logical_to_grid_map,
const domain::CoordinateMapBase< Frame::Grid, Frame::Inertial, VolumeDim > &  grid_to_inertial_map,
double  time,
const std::unordered_map< std::string, std::unique_ptr< domain::FunctionsOfTime::FunctionOfTime > > &  functions_of_time,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =

◆ unnormalized_face_normal() [7/8]

template<size_t VolumeDim, typename TargetFrame >
void unnormalized_face_normal ( gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * >  result,
const Mesh< VolumeDim - 1 > &  interface_mesh,
const domain::CoordinateMapBase< Frame::ElementLogical, TargetFrame, VolumeDim > &  map,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =

◆ unnormalized_face_normal() [8/8]

template<size_t VolumeDim, typename TargetFrame >
void unnormalized_face_normal ( gsl::not_null< tnsr::i< DataVector, VolumeDim, TargetFrame > * >  result,
const Mesh< VolumeDim - 1 > &  interface_mesh,
const ElementMap< VolumeDim, TargetFrame > &  map,
const Direction< VolumeDim > &  direction 
)

Compute the outward grid normal on a face of an Element.

Details

Computes the grid-frame normal by taking the logical-frame unit one-form in the given Direction and mapping it to the grid frame with the given map, or the given inverse Jacobian.

Example

const Mesh<0> mesh_0d;
const auto map_1d = make_coordinate_map<Frame::ElementLogical, Frame::Grid>(
CoordinateMaps::Affine(-1.0, 1.0, -3.0, 7.0));
const auto normal_1d_lower =