SpECTRE
v2025.03.17
|
Items related to solving for irrotational Binary Neutron Star initial data. More...
Namespaces | |
namespace | BoundaryConditions |
Boundary conditions for binary neutron star initial data. | |
namespace | Tags |
Items related to solving for irrotational bns initial data. | |
Classes | |
struct | FirstOrderSystem |
The Irrotational Bns equations From Baumgarte and Shapiro Chapter 15 formulated as a set of coupled first-order PDEs. More... | |
struct | Fluxes |
Compute the fluxes \(F^i\) for the curved-space Irrotatational BNS equations on a spatial metric \(\gamma_{ij}\). More... | |
struct | Sources |
Add the sources \(S_A\) for the curved-space Irrotatioanl BNS equation on a spatial metric \(\gamma_{ij}\). More... | |
Functions | |
void | fluxes_on_face (gsl::not_null< tnsr::I< DataVector, 3 > * > face_flux_for_potential, const tnsr::i< DataVector, 3 > &face_normal, const tnsr::I< DataVector, 3 > &face_normal_vector, const tnsr::II< DataVector, 3 > &rotational_shift_stress, const Scalar< DataVector > &velocity_potential) |
Compute the fluxes. More... | |
void | potential_fluxes (gsl::not_null< tnsr::I< DataVector, 3 > * > flux_for_potential, const tnsr::II< DataVector, 3 > &rotational_shift_stress, const tnsr::II< DataVector, 3 > &inverse_spatial_metric, const tnsr::i< DataVector, 3 > &velocity_potential_gradient) |
Compute the generic fluxes \( F^i = D^i \Phi - \frac{B^jD_j\Phi}{\alpha^2} B^i \) for the Irrotational BNS equation for the velocity potential. | |
void | add_potential_sources (gsl::not_null< Scalar< DataVector > * > source_for_potential, const tnsr::i< DataVector, 3 > &log_deriv_lapse_times_density_over_specific_enthalpy, const tnsr::i< DataVector, 3 > &christoffel_contracted, const tnsr::I< DataVector, 3 > &flux_for_potential) |
Add the sources \(S=-\Gamma^i_{ij}F^j - \D_j \left(\ln\alpha \rho / h\right) F^j\) for the curved-space Irrotational BNS equation on a spatial metric \(\gamma_{ij}\). More... | |
Items related to solving for irrotational Binary Neutron Star initial data.
We solve the equations for the relativistic quasi-equilibrium configuration associated with an object in a quasi-circular orbit around a binary companion. We assume the compact object is nonspinning, which allows the solution to be written in terms of a "velocity potential", which is a function \(\Phi\) such that \(D_i \Phi = \rho h u_i\), with \( \rho, h\) the rest mass density and specific enthalpy respectively, and \(u_i \) the spatial part of the four velocity
void BnsInitialData::add_potential_sources | ( | gsl::not_null< Scalar< DataVector > * > | source_for_potential, |
const tnsr::i< DataVector, 3 > & | log_deriv_lapse_times_density_over_specific_enthalpy, | ||
const tnsr::i< DataVector, 3 > & | christoffel_contracted, | ||
const tnsr::I< DataVector, 3 > & | flux_for_potential | ||
) |
Add the sources \(S=-\Gamma^i_{ij}F^j - \D_j \left(\ln\alpha \rho / h\right) F^j\) for the curved-space Irrotational BNS equation on a spatial metric \(\gamma_{ij}\).
These sources arise from the non-principal part of the Laplacian on a non-Euclidean background.
void BnsInitialData::fluxes_on_face | ( | gsl::not_null< tnsr::I< DataVector, 3 > * > | face_flux_for_potential, |
const tnsr::i< DataVector, 3 > & | face_normal, | ||
const tnsr::I< DataVector, 3 > & | face_normal_vector, | ||
const tnsr::II< DataVector, 3 > & | rotational_shift_stress, | ||
const Scalar< DataVector > & | velocity_potential | ||
) |
Compute the fluxes.
\[ F^i = \gamma^{ij} n_j \Phi - n_j \Phi \frac{B^iB^j}{\alpha^2} \]
where \( n_j\) is the face_normal
.
The face_normal_vector
is \( \gamma^{ij} n_j\).