Bibliography
[1]

Douglas Arnold, Franco Brezzi, Bernardo Cockburn, and Donatella L. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5):1749–1779, 2002.

[2]

Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky. Implementing an apparent horizon finder in three-dimensions. Phys. Rev., D54:4849–4857, 1996. arXiv:gr-qc/9606010.

[3]

Thomas W. Baumgarte, Niall Ó Murchadha, and Harald P. Pfeiffer. The Einstein constraints: Uniqueness and non-uniqueness in the conformal thin sandwich approach. Phys. Rev., D75:044009, 2007. arXiv:gr-qc/0610120.

[4]

Kris Beckwith and James M. Stone. A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics. The Astrophysical Journal Supplement Series, 193(1):6, 2011. arXiv:1101.3573.

[5]

Bernardo Cockburn. Discontinuous Galerkin Methods for Convection-Dominated Problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[6]

A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2):645–673, 2002.

[7]

L. Del Zanna, O. Zanotti, N. Bucciantini, and P. Londrillo. ECHO: An Eulerian Conservative High Order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astron. Astrophys., 473:11–30, 2007. arXiv:0704.3206.

[8]

L. G. Fishbone and V. Moncrief. Relativistic fluid disks in orbit around Kerr black holes. The Astrophysical Journal, 207(1):962–976, 1976.

[9]

Francois Foucart, Evan O'Connor, Luke Roberts, Matthew D. Duez, Roland Haas, Lawrence E. Kidder, Christian D. Ott, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi. Post-merger evolution of a neutron star-black hole binary with neutrino transport. Phys. Rev., D91(12):124021, 2015. arXiv:1502.04146.

[10]

Charles F. Gammie, Jonathan C. McKinney, and Gábor Tóth. HARM: A numerical scheme for general relativistic magnetohydrodynamics. The Astrophysical Journal, 589(1):444, 2003.

[11]

J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan. Spin s spherical harmonics and edth. J. Math. Phys., 8:2155, 1967.

[12]

Carsten Gundlach. Pseudospectral apparent horizon finders: An efficient new algorithm. Phys. Rev., D57:863–875, 1998. arXiv:gr-qc/9707050.

[13]

J.B. Hartle. Gravity: An Introduction to Einstein's General Relativity. Addison-Wesley, 2003.

[14]

Daniel A. Hemberger, Mark A. Scheel, Lawrence E. Kidder, Béla Szilágyi, Geoffrey Lovelace, Nicholas W. Taylor, and Saul A. Teukolsky. Dynamical excision boundaries in spectral evolutions of binary black hole spacetimes. Class. Quant. Grav., 30:115001, 2013. arXiv:1211.6079.

[15]

Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods. Springer, 2008.

[16]

Michael Holst, Lee Lindblom, Robert Owen, Harald P. Pfeiffer, Mark A. Scheel, and Lawrence E. Kidder. Optimal constraint projection for hyperbolic evolution systems. Phys. Rev., D70:084017, 2004. arXiv:gr-qc/0407011.

[17]

Lawrence E. Kidder, Scott E. Field, Francois Foucart, Erik Schnetter, Saul A. Teukolsky, Andy Bohn, Nils Deppe, Peter Diener, François Hébert, Jonas Lippuner, Jonah Miller, Christian D. Ott, Mark A. Scheel, and Trevor Vincent. SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics. Journal of Computational Physics, 335:84–114, 2017. arXiv:1609.00098.

[18]

S. S. Komissarov. A Godunov-type scheme for relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 303(2):343–366, 1999.

[19]

David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations. Springer, 2009.

[20]

M. Kozlowski, M. Jaroszynski, and M. A. Abramowicz. The analytic theory of fluid disks orbiting the Kerr black hole. Astronomy and Astrophysics, 63(1-2):209–220, 1978.

[21]

Lilia Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics, 226(1):879 – 896, 2007.

[22]

Lee Lindblom, Mark A. Scheel, Lawrence E. Kidder, Robert Owen, and Oliver Rinne. A new generalized harmonic evolution system. Class. Quant. Grav., 23:S447–S462, 2006. arXiv:gr-qc/0512093.

[23]

Lee Lindblom. Phase transitions and the mass radius curves of relativistic stars. Phys. Rev., D58:024008, 1998. arXiv:gr-qc/9802072.

[24]

Geoffrey Lovelace, Robert Owen, Harald P. Pfeiffer, and Tony Chu. Binary-black-hole initial data with nearly-extremal spins. Phys. Rev., D78:084017, 2008. arXiv:0805.4192.

[25]

Gerald N. Minerbo. Maximum entropy Eddington factors. Journal of Quantitative Spectroscopy and Radiative Transfer, 20(6):541 – 545, 1978.

[26]

Robert Owen, Alex S. Fox, John A. Freiberg, and Terrence Pierre Jacques. Black hole spin axis in numerical relativity. 2017.arXiv:1708.07325.

[27]

Robert Owen. The final remnant of binary black hole mergers: Multipolar analysis. Phys. Rev., D80:084012, 2009. arXiv:0907.0280.

[28]

Oliver Porth, Hector Olivares, Yosuke Mizuno, Ziri Younsi, Luciano Rezzolla, Monika Moscibrodzka, Heino Falcke, and Michael Kramer. The black hole accretion code. 2016.arXiv:1611.09720.

[29]

Benjamin Stamm and Thomas P. Wihler. hp-Optimal discontinuous Galerkin methods for linear elliptic problems. Mathematics of Computation, 79:2117–2133, 2010.

[30]

Saul A. Teukolsky. Formulation of discontinuous Galerkin methods for relativistic astrophysics. J. Comput. Phys., 312:333–356, 2016. arXiv:1510.01190.

[31]

Kip S. Thorne and Roger D. Blandford. Modern Classical Physics. Princeton University Press, 2017.

[32]

H. C. Yee, N. D. Sandham, and M. J. Djomehri. Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys., 150:199–238, 1999.