Bibliography
[1]

Miguel Alcubierre and others. Toward standard testbeds for numerical relativity. Class. Quant. Grav., 21(2):589–613, 2004. arXiv:gr-qc/0305023.

[2]

Douglas Arnold, Franco Brezzi, Bernardo Cockburn, and Donatella L. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5):1749–1779, 2002.

[3]

E.H. Ayachour. A fast implementation for GMRES method. Journal of Computational and Applied Mathematics, 159(2):269 – 283,

[4]

D. S. Balsara and D. S. Spicer. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations. Journal of Computational Physics, 149:270–292, March 1999.

[5]

Kevin Barkett, Jordan Moxon, Mark A. Scheel, and Béla Szilágyi. Spectral Cauchy-characteristic extraction of the gravitational wave news function. 2019.arXiv:1910.09677.

[6]

Thomas W. Baumgarte and Stuart L. Shapiro. Numerical Relativity: Solving Einstein's Equations on the Computer. Cambridge University Press, 2010.

[7]

Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky. Implementing an apparent horizon finder in three-dimensions. Phys. Rev., D54:4849–4857, 1996. arXiv:gr-qc/9606010.

[8]

Thomas W. Baumgarte, Niall Ó Murchadha, and Harald P. Pfeiffer. The Einstein constraints: Uniqueness and non-uniqueness in the conformal thin sandwich approach. Phys. Rev., D75:044009, 2007. arXiv:gr-qc/0610120.

[9]

Kris Beckwith and James M. Stone. A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics. The Astrophysical Journal Supplement Series, 193(1):6, 2011. arXiv:1101.3573.

[10]

Nigel T. Bishop, Roberto Gomez, Luis Lehner, Manoj Maharaj, and Jeffrey Winicour. High powered gravitational news. Phys. Rev., D56:6298–6309, 1997. arXiv:gr-qc/9708065.

[11]

Nigel T. Bishop, Roberto Gomez, Luis Lehner, Bela Szilagyi, Jeffrey Winicour, and Richard A. Isaacson. Cauchy characteristic matching. In Bala R. Iyer and Biblap Bhawal, editors, Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara, pages 383–408. 1998. arXiv:gr-qc/9801070.

[12]

Michael Boyle and others. The SXS Collaboration catalog of binary black hole simulations. 2019.arXiv:1904.04831.

[13]

Michael Boyle. Transformations of asymptotic gravitational-wave data. Phys.Rev.D, 93(8):084031, 2016. arXiv:1509.00862.

[14]

Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu. Composing scalable nonlinear algebraic solvers. SIAM Review, 57(4):535–565, Jan 2015. arXiv:1607.04254.

[15]

Luisa T. Buchman, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi. Simulations of non-equal mass black hole binaries with spectral methods. Phys. Rev. D, 86:084033, 2012. arXiv:1206.3015.

[16]

E. Casoni, J. Peraire, and A. Huerta. One-dimensional shock-capturing for high-order discontinuous galerkin methods. International Journal for Numerical Methods in Fluids, 71(6):737–755,

[17]

Subrahmanyan Chandrasekhar. An introduction to the study of stellar structure. 1939.

[18]

S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (mood). Journal of Computational Physics, 230(10):4028 – 4050, 2011.

[19]

Bernardo Cockburn. Discontinuous Galerkin Methods for Convection-Dominated Problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[20]

S. F. Davis. Simplified second-order godunov-type methods. SIAM J. Sci. Stat. Comput., 9(3):445–473, 1988.

[21]

A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2):645–673, 2002.

[22]

L. Del Zanna, N. Bucciantini, and P. Londrillo. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics. Astron. Astrophys., 400:397–414, 2003. arXiv:astro-ph/0210618.

[23]

L. Del Zanna, O. Zanotti, N. Bucciantini, and P. Londrillo. ECHO: An Eulerian Conservative High Order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astron. Astrophys., 473:11–30, 2007. arXiv:0704.3206.

[24]

J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.

[25]

Nils Deppe, Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky. Critical behavior in 3D gravitational collapse of massless scalar fields. Phys. Rev., D99(2):024018, 2019. arXiv:1802.08682.

[26]

S. Diot, S. Clain, and R. Loubère. Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Computers & Fluids, 64:43 – 63, 2012.

[27]

S. Diot, R. Loubère, and S. Clain. The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. International Journal for Numerical Methods in Fluids, 73(4):362–392,

[28]

M. Dumbser and M. Käser. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. Journal of Computational Physics, 221:693–723, 2007.

[29]

Michael Dumbser, Olindo Zanotti, Raphaël Loubère, and Steven Diot. A posteriori subcell limiting of the discontinuous galerkin finite element method for hyperbolic conservation laws. Journal of Computational Physics, 278:47 – 75, 2014.

[30]

Zachariah B. Etienne, Yuk Tung Liu, and Stuart L. Shapiro. Relativistic magnetohydrodynamics in dynamical spacetimes: A new AMR implementation. Phys. Rev., D82:084031, 2010. arXiv:1007.2848.

[31]

L. G. Fishbone and V. Moncrief. Relativistic fluid disks in orbit around Kerr black holes. The Astrophysical Journal, 207(1):962–976, 1976.

[32]

José A. Font and J. M. Ibáñez. A Numerical Study of Relativistic Bondi-Hoyle Accretion onto a Moving Black Hole: Axisymmetric Computations in a Schwarzschild Background. apj , 494(1):297–316, Feb 1998.

[33]

Francois Foucart, Evan O'Connor, Luke Roberts, Matthew D. Duez, Roland Haas, Lawrence E. Kidder, Christian D. Ott, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi. Post-merger evolution of a neutron star-black hole binary with neutrino transport. Phys. Rev., D91(12):124021, 2015. arXiv:1502.04146.

[34]

Charles F. Gammie, Jonathan C. McKinney, and Gábor Tóth. HARM: A numerical scheme for general relativistic magnetohydrodynamics. The Astrophysical Journal, 589(1):444, 2003.

[35]

Thomas A. Gardiner and James M. Stone. An Unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys., 205:509–539, 2005. arXiv:astro-ph/0501557.

[36]

J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan. Spin s spherical harmonics and edth. J. Math. Phys., 8:2155, 1967.

[37]

Carsten Gundlach. Pseudospectral apparent horizon finders: An efficient new algorithm. Phys. Rev., D57:863–875, 1998. arXiv:gr-qc/9707050.

[38]

Casey J. Handmer and B. Szilagyi. Spectral Characteristic Evolution: A New Algorithm for Gravitational Wave Propagation. Class. Quant. Grav., 32(2):025008, 2015. arXiv:1406.7029.

[39]

A. Harten, P. D. Lax, and B. van Leer. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review, 25(1):35–61, 1983.

[40]

Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes, iii. Journal of Computational Physics, 131(1):3 – 47, 1997.

[41]

J.B. Hartle. Gravity: An Introduction to Einstein's General Relativity. Addison-Wesley, 2003.

[42]

Daniel A. Hemberger, Mark A. Scheel, Lawrence E. Kidder, Béla Szilágyi, Geoffrey Lovelace, Nicholas W. Taylor, and Saul A. Teukolsky. Dynamical excision boundaries in spectral evolutions of binary black hole spacetimes. Class. Quant. Grav., 30:115001, 2013. arXiv:1211.6079.

[43]

Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods. Springer, 2008.

[44]

Michael Holst, Lee Lindblom, Robert Owen, Harald P. Pfeiffer, Mark A. Scheel, and Lawrence E. Kidder. Optimal constraint projection for hyperbolic evolution systems. Phys. Rev., D70:084017, 2004. arXiv:gr-qc/0407011.

[45]

Songming Hou and Xu-Dong Liu. Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous galerkin method. Journal of Scientific Computing, 31(1):127–151, May 2007.

[46]

Lawrence E. Kidder, Scott E. Field, Francois Foucart, Erik Schnetter, Saul A. Teukolsky, Andy Bohn, Nils Deppe, Peter Diener, François Hébert, Jonas Lippuner, Jonah Miller, Christian D. Ott, Mark A. Scheel, and Trevor Vincent. SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics. Journal of Computational Physics, 335:84–114, 2017. arXiv:1609.00098.

[47]

S. S. Komissarov. A Godunov-type scheme for relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 303(2):343–366, 1999.

[48]

David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations. Springer, 2009.

[49]

M. Kozlowski, M. Jaroszynski, and M. A. Abramowicz. The analytic theory of fluid disks orbiting the Kerr black hole. Astronomy and Astrophysics, 63(1-2):209–220, 1978.

[50]

L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, and J.E. Flaherty. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Applied Numerical Mathematics, 48(3):323 – 338, 2004. Workshop on Innovative Time Integrators for PDEs.

[51]

Lilia Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics, 226(1):879 – 896, 2007.

[52]

A. G. Kulikovskii, N. V. Pogorelov, and A. Y. Semenov. Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Monographs and Surveys in Pure and Applied Mathematics. CRC Press, 2000.

[53]

Luis Lehner and Frans Pretorius. Black Strings, Low Viscosity Fluids, and Violation of Cosmic Censorship. Phys. Rev. Lett., 105:101102, 2010. arXiv:1006.5960.

[54]

Lee Lindblom, Mark A. Scheel, Lawrence E. Kidder, Robert Owen, and Oliver Rinne. A new generalized harmonic evolution system. Class. Quant. Grav., 23:S447–S462, 2006. arXiv:gr-qc/0512093.

[55]

Lee Lindblom. Phase transitions and the mass radius curves of relativistic stars. Phys. Rev., D58:024008, 1998. arXiv:gr-qc/9802072.

[56]

Raphaël Loubère, Michael Dumbser, and Steven Diot. A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Communications in Computational Physics, 16(3):718–763, 2014.

[57]

Geoffrey Lovelace, Robert Owen, Harald P. Pfeiffer, and Tony Chu. Binary-black-hole initial data with nearly-extremal spins. Phys. Rev., D78:084017, 2008. arXiv:0805.4192.

[58]

Geoffrey Lovelace, Carlos O. Lousto, James Healy, Mark A. Scheel, Alyssa Garcia, Richard O'Shaughnessy, Michael Boyle, Manuela Campanelli, Daniel A. Hemberger, Lawrence E. Kidder, Harald P. Pfeiffer, Béla Szilágyi, Saul A. Teukolsky, and Yosef Zlochower. Modeling the source of GW150914 with targeted numerical-relativity simulations. Class. Quant. Grav., 33(24):244002, 2016. arXiv:1607.05377.

[59]

Geoffrey Lovelace, Nicholas Demos, and Haroon Khan. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings. Class. Quant. Grav., 35(2):025017, 2018. arXiv:1707.07774.

[60]

Geoffrey Lovelace. The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers. Class. Quant. Grav., 24(17):4491–4512, 2007. arXiv:gr-qc/0610041.

[61]

F. Curtis Michel. Accretion of matter by condensed objects. Astrophysics and Space Science, 15(1):153–160, Jan 1972.

[62]

A. Mignone, P. Tzeferacos, and G. Bodo. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD. J. Comput. Phys., 229:5896–5920, 2010. arXiv:1001.2832.

[63]

Gerald N. Minerbo. Maximum entropy Eddington factors. Journal of Quantitative Spectroscopy and Radiative Transfer, 20(6):541 – 545, 1978.

[64]

Robert Owen, Alex S. Fox, John A. Freiberg, and Terrence Pierre Jacques. Black hole spin axis in numerical relativity. 2017.arXiv:1708.07325.

[65]

Robert Owen. The final remnant of binary black hole mergers: Multipolar analysis. Phys. Rev., D80:084012, 2009. arXiv:0907.0280.

[66]

A. J. Penner. General relativistic magnetohydrodynamic Bondi-Hoyle accretion. mnras , 414(2):1467–1482, Jun 2011. arXiv:1011.2976.

[67]

Oliver Porth, Hector Olivares, Yosuke Mizuno, Ziri Younsi, Luciano Rezzolla, Monika Moscibrodzka, Heino Falcke, and Michael Kramer. The black hole accretion code. 2016.arXiv:1611.09720.

[68]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, sep 2007.

[69]

Rezzolla, L. and Zanotti, O. Relativistic Hydrodynamics. Oxford University Press, sep 2013.

[70]

Yousef Saad. Iterative Methods for Sparse Linear Systems: Second Edition. Society for Industrial and Applied Mathematics, 2003.

[71]

K. Schaal, A. Bauer, P. Chandrashekar, R. Pakmor, C. Klingenberg, and V. Springel. Astrophysical hydrodynamics with a high-order discontinuous galerkin scheme and adaptive mesh refinement. MNRAS, 453:4278–4300, 2015.

[72]

Stuart L. Shapiro and Saul A. Teukolsky. Black holes, white dwarfs, and neutron stars: the physics of compact objects. 1983.

[73]

Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2):439 – 471, 1988.

[74]

Gary A Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, 1978.

[75]

Matthias Sonntag and Claus-Dieter Munz. Shock capturing for discontinuous galerkin methods using finite volume subcells. In Jürgen Fuhrmann, Mario Ohlberger, and Christian Rohde, editors, Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, pages 945–953. Springer International Publishing, 2014.

[76]

Benjamin Stamm and Thomas P. Wihler. hp-Optimal discontinuous Galerkin methods for linear elliptic problems. Mathematics of Computation, 79:2117–2133, 2010.

[77]

Jörg Stiller. Robust multigrid for Cartesian interior penalty DG formulations of the Poisson equation in 3d. 2016.arXiv:1612.04796.

[78]

Jörg Stiller. Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver suitable for high-aspect ratio Cartesian grids. Journal of Computational Physics, 327, 2016. arXiv:1603.02524.

[79]

Bela Szilagyi, Lee Lindblom, and Mark A. Scheel. Simulations of Binary Black Hole Mergers Using Spectral Methods. Phys. Rev., D80:124010, 2009. arXiv:0909.3557.

[80]

Saul A. Teukolsky. Formulation of discontinuous Galerkin methods for relativistic astrophysics. J. Comput. Phys., 312:333–356, 2016. arXiv:1510.01190.

[81]

Kip S. Thorne and Roger D. Blandford. Modern Classical Physics. Princeton University Press, 2017.

[82]

E. F. Toro, M. Spruce, and W. Speares. Restoration of the Contact Surface in the HLL–Riemann Solver. Shock Waves, 4(1):25–34, 1994.

[83]

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 2009.

[84]

Trevor Vincent, Harald P. Pfeiffer, and Nils L. Fischer. hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Phys. Rev. D, 100(8):084052, 2019. arXiv:1907.01572.

[85]

Christopher J. White, James M. Stone, and Charles F. Gammie. An Extension of the Athena++ Code Framework for GRMHD Based on Advanced Riemann Solvers and Staggered-Mesh Constrained Transport. Astrophys. J. Suppl., 225(2):22, 2016. arXiv:1511.00943.

[86]

H. C. Yee, N. D. Sandham, and M. J. Djomehri. Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys., 150:199–238, 1999.

[87]

Xinghui Zhong and Chi-Wang Shu. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics, 232(1):397–415, 2013.

[88]

Jun Zhu, Xinghui Zhong, Chi-Wang Shu, and Jianxian Qiu. Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter. Communications in Computational Physics, 19(4):944–969, 2016.