SpECTRE  v2024.09.29
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
Bibliography
[1]

J. Ahrens, Berk Geveci, and C. Law. ParaView: An end-user tool for large-data visualization. Elsevier, 2005.

[2]

Miguel Alcubierre and others. Toward standard testbeds for numerical relativity. Class. Quant. Grav., 21(2):589–613, 2004. arXiv:gr-qc/0305023.

[3]

Daniela Alic, Philipp Moesta, Luciano Rezzolla, Olindo Zanotti, and José Luis Jaramillo. Accurate simulations of binary black hole mergers in force-free electrodynamics. The Astrophysical Journal, 754(1):36, 2012.

[4]

Luis Antón, Olindo Zanotti, Juan A. Miralles, José M. Martí, José M. Ibáñez, José A. Font, and José A. Pons. Numerical 3+1 general relativistic magnetohydrodynamics: A local characteristic approach. The Astrophysical Journal, 637:296, jan 2006.

[5]

Douglas Arnold, Franco Brezzi, Bernardo Cockburn, and Donatella L. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5):1749–1779, 2002.

[6]

Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., Clifton Park, NY, USA, 2015.

[7]

E.H. Ayachour. A fast implementation for GMRES method. Journal of Computational and Applied Mathematics, 159(2):269 – 283,

[8]

D. S. Balsara and D. S. Spicer. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations. Journal of Computational Physics, 149:270–292, March 1999.

[9]

Dinshaw S. Balsara, Sudip Garain, and Chi-Wang Shu. An efficient class of weno schemes with adaptive order. Journal of Computational Physics, 326:780–804, 2016.

[10]

Dinshaw Balsara. Total variation diminishing scheme for relativistic magnetohydrodynamics. The Astrophysical Journal Supplement Series, 132(1):83–101, January

[11]

Kevin Barkett, Jordan Moxon, Mark A. Scheel, and Béla Szilágyi. Spectral Cauchy-characteristic extraction of the gravitational wave news function. 2019.arXiv:1910.09677.

[12]

W. Barreto, A. Da Silva, R. Gomez, L. Lehner, L. Rosales, and J. Winicour. The 3-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity. Phys. Rev. D, 71:064028, 2005. arXiv:gr-qc/0412066.

[13]

Thomas W. Baumgarte and Stuart L. Shapiro. Numerical Relativity: Solving Einstein's Equations on the Computer. Cambridge University Press, 2010.

[14]

Thomas W. Baumgarte, Gregory B. Cook, Mark A. Scheel, Stuart L. Shapiro, and Saul A. Teukolsky. Implementing an apparent horizon finder in three-dimensions. Phys. Rev., D54:4849–4857, 1996. arXiv:gr-qc/9606010.

[15]

Thomas W. Baumgarte, Niall Ó Murchadha, and Harald P. Pfeiffer. The Einstein constraints: Uniqueness and non-uniqueness in the conformal thin sandwich approach. Phys. Rev., D75:044009, 2007. arXiv:gr-qc/0610120.

[16]

Alvin Bayliss and Eli Turkel. Radiation boundary conditions for wave-like equations. Communications on Pure and Applied Mathematics, 33(6):707–725, 1980.

[17]

Kris Beckwith and James M. Stone. A second-order Godunov method for multi-dimensional relativistic magnetohydrodynamics. The Astrophysical Journal Supplement Series, 193(1):6, 2011. arXiv:1101.3573.

[18]

Jesse Beder, Matthew Woehlke, Jens Breitbart, Scott Wolchok, Azamat H. Hackimov, Jamie Snape, Oliver Hamlet, Paul Novotny, Raul Tambre, Stefan Reinhold, Alain Vaucher, Alexander Zaitsev, Alexander Anokhin, Alexander Karatarakis, Andy Maloney, Antony Polukhin, Craig M. Brandenburg, Dan Ibanez, Denis Gladkikh, Florian Eich, Guillaume Dumont, Haydn Trigg, Jim King, Joel Frederico, Jonathan Hamilton, Joseph Langley, Lassi Hämäläinen, Matt Blair, Michael Welsh Duggan, Olli Wang, Patrick Stotko, Peter Levine, Petr Bena, Rodrigo Hernandez Cordoba, Ryan Schmidt, Simon Gene Gottlieb, Franz Prilmeier, Tanki Zhang, Tatsuyuki Ishi, Ted Lyngmo, Victor Mataré, Michael Konečný, and USDOE. yaml-cpp, 9 2009.

[19]

Swetha Bhagwat, Maria Okounkova, Stefan W. Ballmer, Duncan A. Brown, Matthew Giesler, Mark A. Scheel, and Saul A. Teukolsky. On choosing the start time of binary black hole ringdowns. Phys. Rev. D, 97(10):104065, 2018. arXiv:1711.00926.

[20]

Nigel T. Bishop, Roberto Gomez, Luis Lehner, Manoj Maharaj, and Jeffrey Winicour. High powered gravitational news. Phys. Rev., D56:6298–6309, 1997. arXiv:gr-qc/9708065.

[21]

Nigel T. Bishop, Roberto Gomez, Luis Lehner, Bela Szilagyi, Jeffrey Winicour, and Richard A. Isaacson. Cauchy characteristic matching. In Bala R. Iyer and Biblap Bhawal, editors, Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V. Vishveshwara, pages 383–408. 1998. arXiv:gr-qc/9801070.

[22]

Morten Bjørhus. The ode formulation of hyperbolic pdes discretized by the spectral collocation method. SIAM Journal on Scientific Computing, 16(3):542–557, 1995.

[23]

Luc Blanchet. Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Rel., 17:2, 2014. arXiv:1310.1528.

[24]

Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191–3211, 2008.

[25]

Michael Boyle and others. The SXS Collaboration catalog of binary black hole simulations. 2019.arXiv:1904.04831.

[26]

Michael Boyle. Transformations of asymptotic gravitational-wave data. Phys.Rev.D, 93(8):084031, 2016. arXiv:1509.00862.

[27]

Steven Brandt and Bernd Brügmann. A simple construction of initial data for multiple black holes. Phys. Rev. Lett., 78:3606–3609, May 1997. arXiv:gr-qc/0404056.

[28]

Christoph Brehm, Michael F. Barad, Jeffrey A. Housman, and Cetin C. Kiris. A comparison of higher-order finite-difference shock capturing schemes. Computers & Fluids, 122:184–208, 2015.

[29]

William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial, second edition.

[30]

Dieter R. Brill and Richard W. Lindquist. Interaction energy in geometrostatics. Phys. Rev., 131:471–476, 1963.

[31]

Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu. Composing scalable nonlinear algebraic solvers. SIAM Review, 57(4):535–565, Jan 2015. arXiv:1607.04254.

[32]

Luisa T. Buchman, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi. Simulations of non-equal mass black hole binaries with spectral methods. Phys. Rev. D, 86:084033, 2012. arXiv:1206.3015.

[33]

E. Casoni, J. Peraire, and A. Huerta. One-dimensional shock-capturing for high-order discontinuous galerkin methods. International Journal for Numerical Methods in Fluids, 71(6):737–755,

[34]

P. Cerdá-Durán, J. A. Font, and H. Dimmelmeier. General relativistic simulations of passive-magneto-rotational core collapse with microphysics. Astronomy and Astrophysics, 474(1):169–191, October 2007. arXiv:astro-ph/0703597.

[35]

P. Cerdá-Durán, J. A. Font, L. Antón, and E. Müller. A new general relativistic magnetohydrodynamics code for dynamical spacetimes. Astronomy and Astrophysics, 492(3):937–953, December 2008. arXiv:0804.4572.

[36]

Subrahmanyan Chandrasekhar. An introduction to the study of stellar structure. 1939.

[37]

Yuxi Chen, Gábor Tóth, and Tamas I. Gombosi. A fifth-order finite difference scheme for hyperbolic equations on block-adaptive curvilinear grids. Journal of Computational Physics, 305:604–621, 2016.

[38]

F. Cipolletta, J. V. Kalinani, B. Giacomazzo, and R. Ciolfi. Spritz: a new fully general-relativistic magnetohydrodynamic code. Classical and Quantum Gravity, 37(13):135010, July 2020. arXiv:1912.04794.

[39]

S. Clain, S. Diot, and R. Loubère. A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (mood). Journal of Computational Physics, 230(10):4028 – 4050, 2011.

[40]

Bernardo Cockburn. Discontinuous Galerkin Methods for Convection-Dominated Problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[41]

Gregory B. Cook and Mark A. Scheel. Well behaved harmonic time slices of a charged, rotating, boosted black hole. Phys. Rev. D, 56:4775–4781, 1997.

[42]

Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky. Spin-up of a Rapidly Rotating Star by Angular Momentum Loss: Effects of General Relativity. The Astrophysical Journal, 398:203, October 1992.

[43]

Gregory B. Cook, Stuart L. Shapiro, and Saul A. Teukolsky. Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State. The Astrophysical Journal, 424:823, April 1994.

[44]

S. F. Davis. Simplified second-order godunov-type methods. SIAM J. Sci. Stat. Comput., 9(3):445–473, 1988.

[45]

M. Brett Deaton, Matthew D. Duez, Francois Foucart, Evan O'Connor, Christian D. Ott, Lawrence E. Kidder, Curran D. Muhlberger, Mark A. Scheel, and Bela Szilagyi. Black hole–neutron star mergers with a hot nuclear equation of state: Outflow and neutrino-cooled disk for a low-mass, high-spin case. The Astrophysical Journal, 776:47, sep 2013.

[46]

A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 175(2):645–673, 2002.

[47]

L. Del Zanna, N. Bucciantini, and P. Londrillo. An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics. Astron. Astrophys., 400:397–414, 2003. arXiv:astro-ph/0210618.

[48]

L. Del Zanna, O. Zanotti, N. Bucciantini, and P. Londrillo. ECHO: An Eulerian Conservative High Order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astron. Astrophys., 473:11–30, 2007. arXiv:0704.3206.

[49]

J. E. Dennis, Jr. and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations.

[50]

Nils Deppe and others. Simulating magnetized neutron stars with discontinuous Galerkin methods. Phys. Rev. D, 105(12):123031, 2022. arXiv:2109.12033.

[51]

Nils Deppe and others. Binary neutron star mergers using a discontinuous Galerkin-finite difference hybrid method. 6 2024.arXiv:2406.19038.

[52]

Nils Deppe, Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky. Critical behavior in 3D gravitational collapse of massless scalar fields. Phys. Rev., D99(2):024018, 2019. arXiv:1802.08682.

[53]

Nils Deppe, François Hébert, Lawrence E. Kidder, and Saul A. Teukolsky. A high-order shock capturing discontinuous Galerkin textendash finite difference hybrid method for GRMHD. Class. Quant. Grav., 39(19):195001, 2022. arXiv:2109.11645.

[54]

L. Derry, R. Isaacson, and J. Winicour. Shear-free gravitational radiation. Phys.Rev., 185:1647–1655, 1969.

[55]

Steven Detweiler and Bernard F. Whiting. Self-force via a green's function decomposition. Phys. Rev. D, 67:024025, Jan 2003.

[56]

Peter Diener, Ernst Nils Dorband, Erik Schnetter, and Manuel Tiglio. New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput., 32:109–145, 2007. arXiv:gr-qc/0512001.

[57]

Harald Dimmelmeier, Jose A. Font, and Ewald Muller. Gravitational waves from relativistic rotational core collapse. The Astrophysical Journal, 560(2):L163–L166, oct 2001.

[58]

S. Diot, S. Clain, and R. Loubère. Improved detection criteria for the multi-dimensional optimal order detection (mood) on unstructured meshes with very high-order polynomials. Computers & Fluids, 64:43 – 63, 2012.

[59]

S. Diot, R. Loubère, and S. Clain. The multidimensional optimal order detection method in the three-dimensional case: very high-order finite volume method for hyperbolic systems. International Journal for Numerical Methods in Fluids, 73(4):362–392,

[60]

M. Dumbser and M. Käser. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. Journal of Computational Physics, 221:693–723, 2007.

[61]

Michael Dumbser, Arturo Hidalgo, and Olindo Zanotti. High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Computer Methods in Applied Mechanics and Engineering, 268:359–387,

[62]

Michael Dumbser, Olindo Zanotti, Raphaël Loubère, and Steven Diot. A posteriori subcell limiting of the discontinuous galerkin finite element method for hyperbolic conservation laws. Journal of Computational Physics, 278:47 – 75, 2014.

[63]

Dumbser, Michael and Guercilena, Federico and Köppel, Sven and Rezzolla, Luciano and Zanotti, Olindo. Conformal and covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes. Phys. Rev. D, 97(8):084053, 2018. arXiv:1707.09910.

[64]

Zachariah B. Etienne, Yuk Tung Liu, Stuart L. Shapiro, and Thomas W. Baumgarte. General relativistic simulations of black-hole-neutron-star mergers: Effects of black-hole spin. Phys. Rev. D, 79:044024, 2009. arXiv:0812.2245.

[65]

Zachariah B. Etienne, Yuk Tung Liu, and Stuart L. Shapiro. Relativistic magnetohydrodynamics in dynamical spacetimes: A new AMR implementation. Phys. Rev., D82:084031, 2010. arXiv:1007.2848.

[66]

Zachariah B Etienne, Mew-Bing Wan, Maria C Babiuc, Sean T McWilliams, and Ashok Choudhary. GiRaFFE: an open-source general relativistic force-free electrodynamics code. Classical and Quantum Gravity, 34(21):215001, sep 2017.

[67]

Nils L. Fischer and Harald P. Pfeiffer. Unified discontinuous Galerkin scheme for a large class of elliptic equations. Phys. Rev. D, 105:024034, Jan 2022. arXiv:2108.05826.

[68]

L. G. Fishbone and V. Moncrief. Relativistic fluid disks in orbit around Kerr black holes. The Astrophysical Journal, 207(1):962–976, 1976.

[69]

José A. Font and J. M. Ibáñez. A Numerical Study of Relativistic Bondi-Hoyle Accretion onto a Moving Black Hole: Axisymmetric Computations in a Schwarzschild Background. apj , 494(1):297–316, Feb 1998.

[70]

Daniel Fortunato, Chris H Rycroft, and Robert Saye. Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin methods. SIAM J. Sci. Comput., 41(6):A3913–A3937, January 2019.

[71]

Francois Foucart, Lawrence E. Kidder, Harald P. Pfeiffer, and Saul A. Teukolsky. Initial data for black hole-neutron star binaries: A flexible, high-accuracy spectral method. Phys. Rev. D, 77:124051, 2008. arXiv:0804.3787.

[72]

Francois Foucart, Evan O'Connor, Luke Roberts, Matthew D. Duez, Roland Haas, Lawrence E. Kidder, Christian D. Ott, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi. Post-merger evolution of a neutron star-black hole binary with neutrino transport. Phys. Rev., D91(12):124021, 2015. arXiv:1502.04146.

[73]

Francois Foucart, Matthew D. Duez, Francois Hebert, Lawrence E. Kidder, Phillip Kovarik, Harald P. Pfeiffer, and Mark A. Scheel. Implementation of Monte Carlo Transport in the General Relativistic SpEC Code. Astrophys. J., 920(2):82, 2021. arXiv:2103.16588.

[74]

Francois Foucart. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations. Mon. Not. Roy. Astron. Soc., 475(3):4186–4207, 2018. arXiv:1708.08452.

[75]

M. Galassi and others. GNU Scientific Library Reference Manual. Network Theory Ltd., 3 edition, 2009.

[76]

Filippo Galeazzi, Wolfgang Kastaun, Luciano Rezzolla, and José A. Font. Implementation of a simplified approach to radiative transfer in general relativity. Phys. Rev. D, 88:064009, 2013. arXiv:1306.4953.

[77]

Charles F. Gammie, Jonathan C. McKinney, and Gábor Tóth. HARM: A numerical scheme for general relativistic magnetohydrodynamics. The Astrophysical Journal, 589(1):444, 2003.

[78]

Thomas A. Gardiner and James M. Stone. An Unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys., 205:509–539, 2005. arXiv:astro-ph/0501557.

[79]

Gregor Gassner, Michael Dumbser, Florian Hindenlang, and Claus-Dieter Munz. Explicit one-step time discretizations for discontinuous galerkin and finite volume schemes based on local predictors. Journal of Computational Physics, 230(11):4232–4247, 2011. Special issue High Order Methods for CFD Problems.

[80]

Bruno Giacomazzo and Luciano Rezzolla. The exact solution of the Riemann problem in relativistic magnetohydrodynamics. Journal of Fluid Mechanics, 562:223–259, September 2006. arXiv:gr-qc/0507102.

[81]

J. N. Goldberg, A. J. MacFarlane, E. T. Newman, F. Rohrlich, and E. C. G. Sudarshan. Spin s spherical harmonics and edth. J. Math. Phys., 8:2155, 1967.

[82]

Carsten Gundlach. Pseudospectral apparent horizon finders: An efficient new algorithm. Phys. Rev., D57:863–875, 1998. arXiv:gr-qc/9707050.

[83]

Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Berlin Heidelberg, Berlin, Heidelberg, 1996.

[84]

E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I Nonstiff problems. Springer, Berlin, 1993.

[85]

Casey J. Handmer and B. Szilagyi. Spectral Characteristic Evolution: A New Algorithm for Gravitational Wave Propagation. Class. Quant. Grav., 32(2):025008, 2015. arXiv:1406.7029.

[86]

A. Harten, P. D. Lax, and B. van Leer. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review, 25(1):35–61, 1983.

[87]

Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes, iii. Journal of Computational Physics, 131(1):3 – 47, 1997.

[88]

J.B. Hartle. Gravity: An Introduction to Einstein's General Relativity. Addison-Wesley, 2003.

[89]

A. Heger, S. E. Woosley, and H. C. Spruit. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields. apj , 626(1):350–363, June 2005. arXiv:astro-ph/0409422.

[90]

Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. LIBXSMM: Accelerating small matrix multiplications by runtime code generation. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '16, pages 1–11. IEEE Press, 2016.

[91]

Daniel A. Hemberger, Mark A. Scheel, Lawrence E. Kidder, Béla Szilágyi, Geoffrey Lovelace, Nicholas W. Taylor, and Saul A. Teukolsky. Dynamical excision boundaries in spectral evolutions of binary black hole spacetimes. Class. Quant. Grav., 30:115001, 2013. arXiv:1211.6079.

[92]

Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin Methods. Springer, 2008.

[93]

Michael Holst, Lee Lindblom, Robert Owen, Harald P. Pfeiffer, Mark A. Scheel, and Lawrence E. Kidder. Optimal constraint projection for hyperbolic evolution systems. Phys. Rev., D70:084017, 2004. arXiv:gr-qc/0407011.

[94]

Songming Hou and Xu-Dong Liu. Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous galerkin method. Journal of Scientific Computing, 31(1):127–151, May 2007.

[95]

Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. Expression templates revisited: A performance analysis of current methodologies. SIAM Journal on Scientific Computing, 34(2):C42–C69, 2012.

[96]

Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. High performance smart expression template math libraries. In 2012 International Conference on High Performance Computing & Simulation (HPCS), pages 367–373, 2012.

[97]

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability between c++11 and python, 2017. https://github.com/pybind/pybind11.

[98]

Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal of Computational Physics, 126(1):202–228, 1996.

[99]

Laxmikant V Kale and Sanjeev Krishnan. Charm++: Parallel programming with message-driven objects. In Gregory V. Wilson and Paul Lu, editors, Parallel programming using C++, pages 175–213. The MIT Press, 1996.

[100]

Laxmikant Kale, Bilge Acun, Seonmyeong Bak, Aaron Becker, Milind Bhandarkar, Nitin Bhat, Abhinav Bhatele, Eric Bohm, Cyril Bordage, Robert Brunner, Ronak Buch, Sayantan Chakravorty, Kavitha Chandrasekar, Jaemin Choi, Michael Denardo, Jayant DeSouza, Matthias Diener, Harshit Dokania, Isaac Dooley, Wayne Fenton, Juan Galvez, Fillipo Gioachin, Abhishek Gupta, Gagan Gupta, Manish Gupta, Attila Gursoy, Vipul Harsh, Fang Hu, Chao Huang, Narain Jagathesan, Nikhil Jain, Pritish Jetley, Prateek Jindal, Raghavendra Kanakagiri, Greg Koenig, Sanjeev Krishnan, Sameer Kumar, David Kunzman, Michael Lang, Akhil Langer, Orion Lawlor, Chee Wai Lee, Jonathan Lifflander, Karthik Mahesh, Celso Mendes, Harshitha Menon, Chao Mei, Esteban Meneses, Eric Mikida, Phil Miller, Ryan Mokos, Venkatasubrahmanian Narayanan, Xiang Ni, Kevin Nomura, Sameer Paranjpye, Parthasarathy Ramachandran, Balkrishna Ramkumar, Evan Ramos, Michael Robson, Neelam Saboo, Vikram Saletore, Osman Sarood, Karthik Senthil, Nimish Shah, Wennie Shu, Amitabh B. Sinha, Yanhua Sun, Zehra Sura, Ehsan Totoni, Krishnan Varadarajan, Ramprasad Venkataraman, Jackie Wang, Lukasz Wesolowski, Sam White, Terry Wilmarth, Jeff Wright, Joshua Yelon, and Gengbin Zheng. The Charm++ Parallel Programming System, Aug 2019.

[101]

Laxmikant Kale, Bilge Acun, Seonmyeong Bak, Aaron Becker, Milind Bhandarkar, Nitin Bhat, Abhinav Bhatele, Eric Bohm, Cyril Bordage, Robert Brunner, Ronak Buch, Sayantan Chakravorty, Kavitha Chandrasekar, Jaemin Choi, Michael Denardo, Jayant DeSouza, Matthias Diener, Harshit Dokania, Isaac Dooley, Wayne Fenton, Zane Fink, Juan Galvez, Pathikrit Ghosh, Fillipo Gioachin, Abhishek Gupta, Gagan Gupta, Manish Gupta, Attila Gursoy, Vipul Harsh, Fang Hu, Chao Huang, Narain Jagathesan, Nikhil Jain, Pritish Jetley, Prateek Jindal, Raghavendra Kanakagiri, Greg Koenig, Sanjeev Krishnan, Sameer Kumar, David Kunzman, Michael Lang, Akhil Langer, Orion Lawlor, Chee Wai Lee, Jonathan Lifflander, Karthik Mahesh, Celso Mendes, Harshitha Menon, Chao Mei, Esteban Meneses, Eric Mikida, Phil Miller, Ryan Mokos, Venkatasubrahmanian Narayanan, Xiang Ni, Kevin Nomura, Sameer Paranjpye, Parthasarathy Ramachandran, Balkrishna Ramkumar, Evan Ramos, Michael Robson, Neelam Saboo, Vikram Saletore, Osman Sarood, Karthik Senthil, Nimish Shah, Wennie Shu, Amitabh B. Sinha, Yanhua Sun, Zehra Sura, Justin Szaday, Ehsan Totoni, Krishnan Varadarajan, Ramprasad Venkataraman, Jackie Wang, Lukasz Wesolowski, Sam White, Terry Wilmarth, Jeff Wright, Joshua Yelon, and Gengbin Zheng. UIUC-PPL/charm: Charm++ version 7.0.0, October 2021.

[102]

Wolfgang Kastaun, Jay Vijay Kalinani, and Riccardo Ciolfi. Robust Recovery of Primitive Variables in Relativistic Ideal Magnetohydrodynamics. Phys. Rev. D, 103(2):023018, 2021. arXiv:2005.01821.

[103]

Christopher A. Kennedy and Mark H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Applied Numerical Mathematics, 44(1):139–181, 2003.

[104]

Christopher A. Kennedy and Mark H. Carpenter. Diagonally implicit Runge-Kutta methods for ordinary differential equations. A review. Technical Report 20160005923, NASA STI Repository, March 2016.

[105]

Lawrence E. Kidder, Mark A. Scheel, and Saul A. Teukolsky. Extending the lifetime of 3-d black hole computations with a new hyperbolic system of evolution equations. Phys. Rev. D, 64:064017, 2001. arXiv:gr-qc/0105031.

[106]

Lawrence E. Kidder, Lee Lindblom, Mark A. Scheel, Luisa T. Buchman, and Harald P. Pfeiffer. Boundary conditions for the Einstein evolution system. Phys. Rev. D, 71:064020, 2005. arXiv:gr-qc/0412116.

[107]

Lawrence E. Kidder, Scott E. Field, Francois Foucart, Erik Schnetter, Saul A. Teukolsky, Andy Bohn, Nils Deppe, Peter Diener, François Hébert, Jonas Lippuner, Jonah Miller, Christian D. Ott, Mark A. Scheel, and Trevor Vincent. SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics. Journal of Computational Physics, 335:84–114, 2017. arXiv:1609.00098.

[108]

S. S. Komissarov. A Godunov-type scheme for relativistic magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 303(2):343–366, 1999.

[109]

S. S. Komissarov. Time-dependent, force-free, degenerate electrodynamics. Monthly Notices of the Royal Astronomical Society, 336(3):759–766,

[110]

S. S. Komissarov. Electrodynamics of black hole magnetospheres. Monthly Notices of the Royal Astronomical Society, 350(2):427–448, May 2004.

[111]

S. S. Komissarov. Simulations of the axisymmetric magnetospheres of neutron stars. Monthly Notices of the Royal Astronomical Society, 367(1):19–31,

[112]

S. S. Komissarov. 3+1 magnetodynamics. Monthly Notices of the Royal Astronomical Society: Letters, 418(1):L94–L98, 2011.

[113]

David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations. Springer, 2009.

[114]

M. Kozlowski, M. Jaroszynski, and M. A. Abramowicz. The analytic theory of fluid disks orbiting the Kerr black hole. Astronomy and Astrophysics, 63(1-2):209–220, 1978.

[115]

Heinz-Otto Kreiss. Methods for the approximate solution of time dependent problems. volume 10 of Global Atmospheric Research Programme. International Council of Scientific Unions, World Meteorological Organization, 1973.

[116]

L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, and J.E. Flaherty. Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Applied Numerical Mathematics, 48(3):323 – 338, 2004. Workshop on Innovative Time Integrators for PDEs.

[117]

Lilia Krivodonova. Limiters for high-order discontinuous Galerkin methods. Journal of Computational Physics, 226(1):879 – 896, 2007.

[118]

A. G. Kulikovskii, N. V. Pogorelov, and A. Y. Semenov. Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Monographs and Surveys in Pure and Applied Mathematics. CRC Press, 2000.

[119]

Dmitri Kuzmin. Hierarchical slope limiting in explicit and implicit discontinuous galerkin methods. Journal of Computational Physics, 257:1140–1162, 2014.

[120]

Guillermo Lara, Harald P. Pfeiffer, Nikolas A. Wittek, Nils L. Vu, Kyle C. Nelli, Alexander Carpenter, Geoffrey Lovelace, Mark A. Scheel, and William Throwe. Scalarization of isolated black holes in scalar Gauss-Bonnet theory in the fixing-the-equations approach. Phys. Rev. D, 110(2):024033, 2024. arXiv:2403.08705.

[121]

Luis Lehner and Frans Pretorius. Black Strings, Low Viscosity Fluids, and Violation of Cosmic Censorship. Phys. Rev. Lett., 105:101102, 2010. arXiv:1006.5960.

[122]

Matthias Liebendörfer. A simple parameterization of the consequences of deleptonization for simulations of stellar core collapse. The Astrophysical Journal, 633(2):1042, nov 2005.

[123]

Lee Lindblom, Mark A. Scheel, Lawrence E. Kidder, Robert Owen, and Oliver Rinne. A new generalized harmonic evolution system. Class. Quant. Grav., 23:S447–S462, 2006. arXiv:gr-qc/0512093.

[124]

Lee Lindblom. Phase transitions and the mass radius curves of relativistic stars. Phys. Rev., D58:024008, 1998. arXiv:gr-qc/9802072.

[125]

Raphaël Loubère, Michael Dumbser, and Steven Diot. A new family of high order unstructured mood and ader finite volume schemes for multidimensional systems of hyperbolic conservation laws. Communications in Computational Physics, 16(3):718–763, 2014.

[126]

Geoffrey Lovelace, Robert Owen, Harald P. Pfeiffer, and Tony Chu. Binary-black-hole initial data with nearly-extremal spins. Phys. Rev., D78:084017, 2008. arXiv:0805.4192.

[127]

Geoffrey Lovelace, Carlos O. Lousto, James Healy, Mark A. Scheel, Alyssa Garcia, Richard O'Shaughnessy, Michael Boyle, Manuela Campanelli, Daniel A. Hemberger, Lawrence E. Kidder, Harald P. Pfeiffer, Béla Szilágyi, Saul A. Teukolsky, and Yosef Zlochower. Modeling the source of GW150914 with targeted numerical-relativity simulations. Class. Quant. Grav., 33(24):244002, 2016. arXiv:1607.05377.

[128]

Geoffrey Lovelace, Nicholas Demos, and Haroon Khan. Numerically modeling Brownian thermal noise in amorphous and crystalline thin coatings. Class. Quant. Grav., 35(2):025017, 2018. arXiv:1707.07774.

[129]

Geoffrey Lovelace, Kyle C. Nelli, Nils Deppe, Nils L. Vu, William Throwe, Marceline S. Bonilla, Alexander Carpenter, Lawrence E. Kidder, Alexandra Macedo, Mark A. Scheel, Azer Afram, Michael Boyle, Andrea Ceja, Matthew Giesler, Sarah Habib, Ken Z. Jones, Prayush Kumar, Guillermo Lara, Denyz Melchor, Iago B. Mendes, Keefe Mitman, Marlo Morales, Jordan Moxon, Eamonn O'Shea, Kyle Pannone, Harald P. Pfeiffer, Teresita Ramirez-Aguilar, Jennifer Sanchez, Daniel Tellez, Saul A. Teukolsky, and Nikolas A. Wittek. Simulating binary black hole mergers using discontinuous Galerkin methods. 9 2024.arXiv:2410.00265.

[130]

Geoffrey Lovelace. The dependence of test-mass thermal noises on beam shape in gravitational-wave interferometers. Class. Quant. Grav., 24(17):4491–4512, 2007. arXiv:gr-qc/0610041.

[131]

Rainald Löhner. An adaptive finite element scheme for transient problems in cfd. Computer Methods in Applied Mechanics and Engineering, 61(3):323–338,

[132]

Sizheng Ma, Vijay Varma, Leo C. Stein, Francois Foucart, Matthew D. Duez, Lawrence E. Kidder, Harald P. Pfeiffer, and Mark A. Scheel. Numerical simulations of black hole-neutron star mergers in scalar-tensor gravity. Phys. Rev. D, 107(12):124051, 2023. arXiv:2304.11836.

[133]

F. Curtis Michel. Accretion of matter by condensed objects. Astrophysics and Space Science, 15(1):153–160, Jan 1972.

[134]

A. Mignone, P. Tzeferacos, and G. Bodo. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD. J. Comput. Phys., 229:5896–5920, 2010. arXiv:1001.2832.

[135]

Gerald N. Minerbo. Maximum entropy Eddington factors. Journal of Quantitative Spectroscopy and Radiative Transfer, 20(6):541 – 545, 1978.

[136]

Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Gravitation. W. H. Freeman, 1973.

[137]

Keefe Mitman, Michael Boyle, Leo C. Stein, Nils Deppe, Lawrence E. Kidder, Jordan Moxon, Harald P. Pfeiffer, Mark A. Scheel, Saul A. Teukolsky, William Throwe, and Nils L. Vu. A review of gravitational memory and bms frame fixing in numerical relativity. 2024.arXiv:2405.08868.

[138]

Niclas Moldenhauer, Charalampos M. Markakis, Nathan K. Johnson-McDaniel, Wolfgang Tichy, and Bernd Brügmann. Initial data for binary neutron stars with adjustable eccentricity. Phys. Rev. D, 90(8):084043, 2014. arXiv:1408.4136.

[139]

Elias R Most and Alexander A Philippov. Electromagnetic precursor flares from the late inspiral of neutron star binaries. Monthly Notices of the Royal Astronomical Society, 515(2):2710–2724, 07 2022.

[140]

Philipp Mösta, Bruno C. Mundim, Joshua A. Faber, Roland Haas, Scott C. Noble, Tanja Bode, Frank Löffler, Christian D. Ott, Christian Reisswig, and Erik Schnetter. GRHydro: A new open source general-relativistic magnetohydrodynamics code for the Einstein Toolkit. Class.Quant.Grav., 31:015005, 2014. arXiv:1304.5544.

[141]

Jordan Moxon, Mark A. Scheel, and Saul A. Teukolsky. Improved Cauchy-characteristic evolution system for high-precision numerical relativity waveforms. Phys. Rev. D, 102(4):044052, 2020. arXiv:2007.01339.

[142]

Jordan Moxon, Mark A. Scheel, Saul A. Teukolsky, Nils Deppe, Nils Fischer, Francois Hébert, Lawrence E. Kidder, and William Throwe. SpECTRE Cauchy-characteristic evolution system for rapid, precise waveform extraction. Phys. Rev. D, 107(6):064013, 2023. arXiv:2110.08635.

[143]

Curran D. Muhlberger, Fatemeh Hossein Nouri, Matthew D. Duez, Francois Foucart, Lawrence E. Kidder, Christian D. Ott, Mark A. Scheel, Béla Szilágyi, and Saul A. Teukolsky. Magnetic effects on the low-T/|W| instability in differentially rotating neutron stars. Phys. Rev. D, 90(10):104014, 2014. arXiv:1405.2144.

[144]

Philipp Mösta, Bruno C Mundim, Joshua A Faber, Roland Haas, Scott C Noble, Tanja Bode, Frank Löffler, Christian D Ott, Christian Reisswig, and Erik Schnetter. Grhydro: a new open-source general-relativistic magnetohydrodynamics code for the einstein toolkit. Classical and Quantum Gravity, 31:015005, nov 2013.

[145]

Peter James Nee, Guillermo Lara, Harald P. Pfeiffer, and Nils L. Vu. Quasistationary hair for binary black hole initial data in scalar Gauss-Bonnet gravity. 6 2024.arXiv:2406.08410.

[146]

Taku Nonomura and Kozo Fujii. Robust explicit formulation of weighted compact nonlinear scheme. Computers & Fluids, 85:8–18, 2013. International Workshop on Future of CFD and Aerospace Sciences.

[147]

Michael F. O'Boyle, Charalampos Markakis, Nikolaos Stergioulas, and Jocelyn S. Read. Parametrized equation of state for neutron star matter with continuous sound speed. Physical Review D, 102(8), oct 2020.

[148]

Evan O'Connor. An Open-source Neutrino Radiation Hydrodynamics Code for Core-collapse Supernovae. apjs , 219(2):24, August 2015. arXiv:1411.7058.

[149]

Serguei Ossokine, Lawrence E. Kidder, and Harald P. Pfeiffer. Precession-tracking coordinates for simulations of compact- object-binaries. Phys. Rev. D, 88:084031, 2013. arXiv:1304.3067.

[150]

Serguei Ossokine, Francois Foucart, Harald P. Pfeiffer, Michael Boyle, and Béla Szilágyi. Improvements to the construction of binary black hole initial data. Class. Quant. Grav., 32:245010, 2015. arXiv:1506.01689.

[151]

Robert Owen, Alex S. Fox, John A. Freiberg, and Terrence Pierre Jacques. Black hole spin axis in numerical relativity. 2017.arXiv:1708.07325.

[152]

Robert Owen. The final remnant of binary black hole mergers: Multipolar analysis. Phys. Rev., D80:084012, 2009. arXiv:0907.0280.

[153]

Brynjulf Owren and Marino Zennaro. Derivation of efficient, continuous, explicit runge–kutta methods. SIAM Journal on Scientific and Statistical Computing, 13(6):1488–1501, 1992.

[154]

Michael A. Pajkos, Sean M. Couch, Kuo-Chuan Pan, and Evan P. O'Connor. Features of accretion-phase gravitational-wave emission from two-dimensional rotating core-collapse supernovae. The Astrophysical Journal, 878(1):13, jun 2019.

[155]

Carlos Palenzuela, Travis Garrett, Luis Lehner, and Steven L. Liebling. Magnetospheres of black hole systems in force-free plasma. Phys. Rev. D, 82:044045, Aug 2010.

[156]

Carlos Palenzuela, Borja Miñano, Daniele Viganò, Antoni Arbona, Carles Bona-Casas, Andreu Rigo, Miguel Bezares, Carles Bona, and Joan Massó. A simflowny-based finite-difference code for high-performance computing in numerical relativity. Classical and Quantum Gravity, 35(18):185007, aug 2018.

[157]

Lorenzo Pareschi and Giovanni Russo. Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J Sci Comput, 25:129–155, 2005. arXiv:1009.2757.

[158]

Vasileios Paschalidis and Stuart L. Shapiro. A new scheme for matching general relativistic ideal magnetohydrodynamics to its force-free limit. Physical Review D, 88(10):104031, November 2013. Publisher: American Physical Society.

[159]

A. J. Penner. General relativistic magnetohydrodynamic Bondi-Hoyle accretion. mnras , 414(2):1467–1482, Jun 2011. arXiv:1011.2976.

[160]

Per-Olof Persson and Jaime Peraire. Sub-cell shock capturing for discontinuous galerkin methods. In 44th AIAA Aerospace Sciences Meeting and Exhibit, page 112, 2006.

[161]

Harald Paul Pfeiffer. Initial data for black hole evolutions. PhD thesis, Cornell U., 2005.arXiv:gr-qc/0510016.

[162]

Oliver Porth, Hector Olivares, Yosuke Mizuno, Ziri Younsi, Luciano Rezzolla, Monika Moscibrodzka, Heino Falcke, and Michael Kramer. The black hole accretion code. 2016.arXiv:1611.09720.

[163]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, sep 2007.

[164]

R.Borrell, J.C.Cajas, D.Mira, A.Taha, S.Koric, M.Vázquez, and G.Houzeaux. Parallel mesh partitioning based on space filling curves. Computers & Fluids, 173:264–272, 2018.

[165]

M. Reinecke and D. S. Seljebotn. Libsharp - spherical harmonic transforms revisited. aap , 554:A112, June 2013. arXiv:1303.4945.

[166]

Sarah Renkhoff, Daniela Cors, David Hilditch, and Bernd Brügmann. Adaptive hp refinement for spectral elements in numerical relativity. Phys. Rev. D, 107(10):104043, 2023. arXiv:2302.00575.

[167]

Rezzolla, L. and Zanotti, O. Relativistic Hydrodynamics. Oxford University Press, sep 2013.

[168]

Sherwood Richers, Christian D. Ott, Ernazar Abdikamalov, Evan O'Connor, and Chris Sullivan. Equation of state effects on gravitational waves from rotating core collapse. prd , 95(6):063019, March 2017. arXiv:1701.02752.

[169]

Oliver Rinne, Lee Lindblom, and Mark A. Scheel. Testing outer boundary treatments for the Einstein equations. Class. Quant. Grav., 24:4053–4078, 2007. arXiv:0704.0782.

[170]

Yousef Saad. Iterative Methods for Sparse Linear Systems: Second Edition. Society for Industrial and Applied Mathematics, 2003.

[171]

K. Schaal, A. Bauer, P. Chandrashekar, R. Pakmor, C. Klingenberg, and V. Springel. Astrophysical hydrodynamics with a high-order discontinuous galerkin scheme and adaptive mesh refinement. MNRAS, 453:4278–4300, 2015.

[172]

Mark A. Scheel, Adrienne L. Erickcek, Lior M. Burko, Lawrence E. Kidder, Harald P. Pfeiffer, and Saul A. Teukolsky. 3-D simulations of linearized scalar fields in Kerr space-time. Phys. Rev. D, 69:104006, 2004. arXiv:gr-qc/0305027.

[173]

Stuart L. Shapiro and Saul A. Teukolsky. Black holes, white dwarfs, and neutron stars: the physics of compact objects. 1983.

[174]

Masaru Shibata and Yu-ichirou Sekiguchi. Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations. Phys. Rev. D, 68:104020, Nov 2003.

[175]

Hotaka Shiokawa, Joshua C. Dolence, Charles F. Gammie, and Scott C. Noble. Global GRMHD Simulations of Black Hole Accretion Flows: a Convergence Study. Astrophys. J., 744:187, 2012. arXiv:1111.0396.

[176]

Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2):439 – 471, 1988.

[177]

Gary A Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, 1978.

[178]

Arnold Sommerfeld. Partial Differential Equations in Physics. Academic Press, 1949.

[179]

Matthias Sonntag and Claus-Dieter Munz. Shock capturing for discontinuous galerkin methods using finite volume subcells. In Jürgen Fuhrmann, Mario Ohlberger, and Christian Rohde, editors, Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, pages 945–953. Springer International Publishing, 2014.

[180]

Anatoly Spitkovsky. Time-dependent force-free pulsar magnetospheres: Axisymmetric and oblique rotators. The Astrophysical Journal, 648(1):L51–L54, aug 2006.

[181]

Benjamin Stamm and Thomas P. Wihler. hp-Optimal discontinuous Galerkin methods for linear elliptic problems. Mathematics of Computation, 79:2117–2133, 2010.

[182]

Jörg Stiller. Robust multigrid for Cartesian interior penalty DG formulations of the Poisson equation in 3d. 2016.arXiv:1612.04796.

[183]

Jörg Stiller. Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver suitable for high-aspect ratio Cartesian grids. Journal of Computational Physics, 327, 2016. arXiv:1603.02524.

[184]

A. Suresh and H.T. Huynh. Accurate monotonicity-preserving schemes with runge–kutta time stepping. Journal of Computational Physics, 136(1):83–99, 1997.

[185]

Bela Szilagyi, Lee Lindblom, and Mark A. Scheel. Simulations of Binary Black Hole Mergers Using Spectral Methods. Phys. Rev., D80:124010, 2009. arXiv:0909.3557.

[186]

Béla Szilágyi. Key Elements of Robustness in Binary Black Hole Evolutions using Spectral Methods. Int. J. Mod. Phys. D, 23(7):1430014, 2014. arXiv:1405.3693.

[187]

Nick Tacik, Francois Foucart, Harald P. Pfeiffer, Curran Muhlberger, Lawrence E. Kidder, Mark A. Scheel, and B. Szilágyi. Initial data for black hole-neutron star binaries, with rotating stars. Class. Quant. Grav., 33(22):225012, 2016. arXiv:1607.07962.

[188]

Saul A. Teukolsky. Formulation of discontinuous Galerkin methods for relativistic astrophysics. J. Comput. Phys., 312:333–356, 2016. arXiv:1510.01190.

[189]

The HDF Group. Hierarchical Data Format, version 5, 1997-2023. https://www.hdfgroup.org/HDF5/.

[190]

Kip S. Thorne and Roger D. Blandford. Modern Classical Physics. Princeton University Press, 2017.

[191]

Kip S. Thorne. Multipole expansions of gravitational radiation. Rev. Mod. Phys., 52:299–339, Apr 1980.

[192]

E. F. Toro, M. Spruce, and W. Speares. Restoration of the Contact Surface in the HLL–Riemann Solver. Shock Waves, 4(1):25–34, 1994.

[193]

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 2009.

[194]

Ch. Tsitouras. Runge-kutta pairs of order 5(4) satisfying only the first column simplifying assumption. Computers & Mathematics with Applications, 62(2):770–775, 2011.

[195]

Vijay Varma, Mark A. Scheel, and Harald P. Pfeiffer. Comparison of binary black hole initial data sets. Phys. Rev. D, 98(10):104011, 2019. arXiv:1808.08228.

[196]

Trevor Vincent, Harald P. Pfeiffer, and Nils L. Fischer. hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity. Phys. Rev. D, 100(8):084052, 2019. arXiv:1907.01572.

[197]

Nils L. Vu and others. A scalable elliptic solver with task-based parallelism for the SpECTRE numerical relativity code. Phys. Rev. D, 105(8):084027, apr 2022. arXiv:2111.06767.

[198]

Nils L Vu, Samuel Rodriguez, Tom Włodarczyk, Geoffrey Lovelace, Harald P Pfeiffer, Gabriel S Bonilla, Nils Deppe, François Hébert, Lawrence E Kidder, Jordan Moxon, and William Throwe. High-accuracy numerical models of brownian thermal noise in thin mirror coatings. Classical and Quantum Gravity, 40(2):025015, jan 2023. arXiv:2111.06893.

[199]

Nils L. Vu. A discontinuous Galerkin scheme for elliptic equations on extremely stretched grids. 5 2024.arXiv:2405.06120.

[200]

Robert M. Wald. Black hole in a uniform magnetic field. Phys. Rev. D, 10:1680–1685, Sep 1974.

[201]

Christopher J. White, James M. Stone, and Charles F. Gammie. An Extension of the Athena++ Code Framework for GRMHD Based on Advanced Riemann Solvers and Staggered-Mesh Constrained Transport. Astrophys. J. Suppl., 225(2):22, 2016. arXiv:1511.00943.

[202]

Nikolas A. Wittek, Adam Pound, Harald P. Pfeiffer, and Leor Barack. Worldtube excision method for intermediate-mass-ratio inspirals: self-consistent evolution in a scalar-charge model. 3 2024.arXiv:2403.08864.

[203]

H. C. Yee, N. D. Sandham, and M. J. Djomehri. Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys., 150:199–238, 1999.

[204]

Olindo Zanotti and Michael Dumbser. Efficient conservative ader schemes based on weno reconstruction and space-time predictor in primitive variables. Computational astrophysics and cosmology, 3(1):1–32, 2016. arXiv:1511.04728.

[205]

Xinghui Zhong and Chi-Wang Shu. A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods. Journal of Computational Physics, 232(1):397–415, 2013.

[206]

Jun Zhu, Xinghui Zhong, Chi-Wang Shu, and Jianxian Qiu. Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter. Communications in Computational Physics, 19(4):944–969, 2016.