SpECTRE
v2024.09.29
|
Items related to solving a Poisson equation \(-\Delta u(x)=f(x)\). More...
Classes | |
struct | FirstOrderSystem |
The Poisson equation formulated as a set of coupled first-order PDEs. More... | |
struct | Fluxes< Dim, Geometry::Curved, DataType > |
Compute the fluxes \(F^i\) for the curved-space Poisson equation on a spatial metric \(\gamma_{ij}\). More... | |
struct | Fluxes< Dim, Geometry::FlatCartesian, DataType > |
Compute the fluxes \(F^i\) for the Poisson equation on a flat metric in Cartesian coordinates. More... | |
struct | Sources< Dim, Geometry::Curved, DataType > |
Add the sources \(S\) for the curved-space Poisson equation on a spatial metric \(\gamma_{ij}\). More... | |
Enumerations | |
enum class | Geometry { FlatCartesian , Curved } |
Types of background geometries for the Poisson equation. More... | |
Functions | |
template<typename DataType , size_t Dim> | |
void | flat_cartesian_fluxes (gsl::not_null< tnsr::I< DataType, Dim > * > flux_for_field, const tnsr::i< DataType, Dim > &field_gradient) |
Compute the fluxes \(F^i=\partial_i u(x)\) for the Poisson equation on a flat spatial metric in Cartesian coordinates. | |
template<typename DataType , size_t Dim> | |
void | curved_fluxes (gsl::not_null< tnsr::I< DataType, Dim > * > flux_for_field, const tnsr::II< DataVector, Dim > &inv_spatial_metric, const tnsr::i< DataType, Dim > &field_gradient) |
Compute the fluxes \(F^i=\gamma^{ij}\partial_j u(x)\) for the curved-space Poisson equation on a spatial metric \(\gamma_{ij}\). | |
template<typename DataType , size_t Dim> | |
void | fluxes_on_face (gsl::not_null< tnsr::I< DataType, Dim > * > flux_for_field, const tnsr::I< DataVector, Dim > &face_normal_vector, const Scalar< DataType > &field) |
Compute the fluxes \(F^i=\gamma^{ij} n_j u\) where \(n_j\) is the face_normal . More... | |
template<typename DataType , size_t Dim> | |
void | add_curved_sources (gsl::not_null< Scalar< DataType > * > source_for_field, const tnsr::i< DataVector, Dim > &christoffel_contracted, const tnsr::I< DataType, Dim > &flux_for_field) |
Add the sources \(S=-\Gamma^i_{ij}v^j\) for the curved-space Poisson equation on a spatial metric \(\gamma_{ij}\). More... | |
Items related to solving a Poisson equation \(-\Delta u(x)=f(x)\).
|
strong |
Types of background geometries for the Poisson equation.
void Poisson::add_curved_sources | ( | gsl::not_null< Scalar< DataType > * > | source_for_field, |
const tnsr::i< DataVector, Dim > & | christoffel_contracted, | ||
const tnsr::I< DataType, Dim > & | flux_for_field | ||
) |
Add the sources \(S=-\Gamma^i_{ij}v^j\) for the curved-space Poisson equation on a spatial metric \(\gamma_{ij}\).
These sources arise from the non-principal part of the Laplacian on a non-Euclidean background.
void Poisson::fluxes_on_face | ( | gsl::not_null< tnsr::I< DataType, Dim > * > | flux_for_field, |
const tnsr::I< DataVector, Dim > & | face_normal_vector, | ||
const Scalar< DataType > & | field | ||
) |
Compute the fluxes \(F^i=\gamma^{ij} n_j u\) where \(n_j\) is the face_normal
.
The face_normal_vector
is \(\gamma^{ij} n_j\).