Classes | Public Types | Public Member Functions | Static Public Attributes | Friends | List of all members
NewtonianEuler::Solutions::LaneEmdenStar Class Reference

A static spherically symmetric star in Newtonian gravity. More...

#include <LaneEmdenStar.hpp>


struct  CentralMassDensity
 The central mass density of the star. More...
struct  PolytropicConstant
 The polytropic constant of the polytropic fluid. More...

Public Types

using equation_of_state_type = EquationsOfState::PolytropicFluid< false >
using source_term_type = Sources::LaneEmdenGravitationalField
using options = tmpl::list< CentralMassDensity, PolytropicConstant >

Public Member Functions

 LaneEmdenStar (const LaneEmdenStar &)=delete
LaneEmdenStaroperator= (const LaneEmdenStar &)=delete
 LaneEmdenStar (LaneEmdenStar &&) noexcept=default
LaneEmdenStaroperator= (LaneEmdenStar &&) noexcept=default
 LaneEmdenStar (double central_mass_density, double polytropic_constant) noexcept
template<typename DataType , typename... Tags>
tuples::TaggedTuple< Tags... > variables (const tnsr::I< DataType, 3 > &x, const double, tmpl::list< Tags... >) const noexcept
 Retrieve a collection of variables at (x, t)
template<typename DataType >
tnsr::I< DataType, 3 > gravitational_field (const tnsr::I< DataType, 3 > &x) const noexcept
 Compute the gravitational field for the corresponding source term, LaneEmdenGravitationalField. More...
const EquationsOfState::PolytropicFluid< false > & equation_of_state () const noexcept
const Sources::LaneEmdenGravitationalFieldsource_term () const noexcept
void pup (PUP::er &) noexcept

Static Public Attributes

static constexpr Options::String help


bool operator== (const LaneEmdenStar &lhs, const LaneEmdenStar &rhs) noexcept

Detailed Description

A static spherically symmetric star in Newtonian gravity.

The solution for a static, spherically-symmetric star in 3 dimensions, found by solving the Lane-Emden equation [13] [59] . The Lane-Emden equation has closed-form solutions for certain equations of state; this class implements the solution for a polytropic fluid with polytropic exponent \(\Gamma=2\) (i.e., with polytropic index \(n=1\)). The solution is returned in units where \(G=1\), with \(G\) the gravitational constant.

The radius and mass of the star are determined by the polytropic constant \(\kappa\) and central density \(\rho_c\). The radius is \(R = \pi \alpha\), and the mass is \(M = 4 \pi^2 \alpha^3 \rho_c\), where \(\alpha = \sqrt{\kappa / (2 \pi)}\) and \(G=1\).

Member Function Documentation

◆ gravitational_field()

template<typename DataType >
tnsr::I< DataType, 3 > NewtonianEuler::Solutions::LaneEmdenStar::gravitational_field ( const tnsr::I< DataType, 3 > &  x) const

Compute the gravitational field for the corresponding source term, LaneEmdenGravitationalField.

The result is the vector-field giving the acceleration due to gravity that is felt by a test particle.

Member Data Documentation

◆ help

constexpr Options::String NewtonianEuler::Solutions::LaneEmdenStar::help
Initial value:
= {
"A static, spherically-symmetric star in Newtonian gravity, found by\n"
"solving the Lane-Emden equations, with a given central density and\n"
"polytropic fluid. The fluid has polytropic index 1, but the polytropic\n"
"constant is specifiable"}

The documentation for this class was generated from the following files: