|
|
| Random (std::unordered_map< amr::Flag, size_t > probability_weights) |
| |
| Type | type () override |
| |
| std::string | observation_name () override |
| |
|
template<size_t Dim, typename Metavariables > |
| auto | operator() (Parallel::GlobalCache< Metavariables > &, const ElementId< Dim > &element_id) const |
| |
|
void | pup (PUP::er &p) override |
| |
|
| Criterion (CkMigrateMessage *msg) |
| |
|
| WRAPPED_PUPable_abstract (Criterion) |
| |
|
virtual Criteria::Type | type ()=0 |
| |
|
virtual std::string | observation_name ()=0 |
| |
| template<typename ComputeTagsList , typename DataBoxType , typename Metavariables > |
| auto | evaluate (const ObservationBox< ComputeTagsList, DataBoxType > &box, Parallel::GlobalCache< Metavariables > &cache, const ElementId< Metavariables::volume_dim > &element_id) const |
| | Evaluates the AMR criteria by selecting the appropriate derived class and forwarding its argument_tags from the ObservationBox (along with the GlobalCache and ArrayIndex) to the call operator of the derived class. More...
|
| |
template<
Type CriteriaType>
class amr::Criteria::Random< CriteriaType >
Randomly refine (or coarsen) an Element in each dimension.
You can specify a probability for each possible amr::Flag. It is evaluated in each dimension separately. Details:
- Probabilities are specified as integer weights. The probability for an
amr::Flag is its weight over the sum of all weights.
- Flags with weight zero do not need to be specified.
- If all weights are zero,
amr::Flag::DoNothing is always chosen.