SpECTRE
v2024.09.29
|
Tags for the CCZ4 formulation of Einstein equations. More...
Classes | |
struct | ATilde |
The trace-free part of the extrinsic curvature. More... | |
struct | ATildeMinusOneThirdConformalMetricTimesTraceATilde |
The CCZ4 temporary expression \(\tilde{A}_{ij} - \frac{1}{3} \tilde{\gamma}_{ij} tr \tilde{A}\). More... | |
struct | ChristoffelSecondKind |
The spatial christoffel symbols of the second kind. More... | |
struct | ConformalChristoffelSecondKind |
The conformal spatial christoffel symbols of the second kind. More... | |
struct | ConformalFactor |
The conformal factor that rescales the spatial metric. More... | |
struct | ConformalFactorSquared |
The square of the conformal factor that rescales the spatial metric. More... | |
struct | ConformalMetricTimesFieldB |
The CCZ4 temporary expression \(\tilde{\gamma}_{ki} B_j{}^k\). More... | |
struct | ConformalMetricTimesTraceATilde |
The CCZ4 temporary expression \(\tilde{\gamma}_{ij} tr \tilde{A}\). More... | |
struct | ContractedConformalChristoffelSecondKind |
The contraction of the conformal spatial Christoffel symbols of the second kind. More... | |
struct | ContractedFieldB |
The CCZ4 temporary expression \(B_k{}^k\). More... | |
struct | DerivConformalChristoffelSecondKind |
The spatial derivative of the conformal spatial christoffel symbols of the second kind. More... | |
struct | DerivContractedConformalChristoffelSecondKind |
The spatial derivative of the contraction of the conformal spatial Christoffel symbols of the second kind. More... | |
struct | DivergenceLapse |
The divergence of the lapse. More... | |
struct | FieldA |
Auxiliary variable which is analytically the spatial derivative of the natural log of the lapse. More... | |
struct | FieldB |
Auxiliary variable which is analytically the spatial derivative of the shift. More... | |
struct | FieldD |
Auxiliary variable which is analytically half the spatial derivative of the conformal spatial metric. More... | |
struct | FieldDUp |
Identity which is analytically negative one half the spatial derivative of the inverse conformal spatial metric. More... | |
struct | FieldDUpTimesATilde |
The CCZ4 temporary expression \(D_k{}^{nm} \tilde{A}_{nm}\). More... | |
struct | FieldP |
Auxiliary variable which is analytically the spatial derivative of the natural log of the conformal factor. More... | |
struct | GammaHat |
The CCZ4 evolved variable \(\hat{\Gamma}^i\). More... | |
struct | GammaHatMinusContractedConformalChristoffel |
The CCZ4 temporary expression \(\hat{\Gamma}^i - \tilde{\Gamma}^i\). More... | |
struct | GradGradLapse |
The gradient of the gradient of the lapse. More... | |
struct | GradSpatialZ4Constraint |
The gradient of the spatial part of the Z4 constraint. More... | |
struct | InverseConformalMetricTimesDerivATilde |
The CCZ4 temporary expression \(\tilde{\gamma}^{nm} \partial_k \tilde{A}_{nm}\). More... | |
struct | InverseTauTimesConformalMetric |
The CCZ4 temporary expression \(\tau^{-1} \tilde{\gamma}_{ij}\). More... | |
struct | KMinus2ThetaC |
The CCZ4 temporary expression \(K - 2 \Theta c\). More... | |
struct | KMinusK0Minus2ThetaC |
The CCZ4 temporary expression \(K - K_0 - 2 \Theta c\). More... | |
struct | LapseTimesATilde |
The CCZ4 temporary expression \(\alpha \tilde{A}_{ij}\). More... | |
struct | LapseTimesDerivATilde |
The CCZ4 temporary expression \(\alpha \partial_k \tilde{A}_{ij}\). More... | |
struct | LapseTimesFieldA |
The CCZ4 temporary expression \(\alpha A_k\). More... | |
struct | LapseTimesRicciScalarPlus2DivergenceZ4Constraint |
The CCZ4 temporary expression \(\alpha (R + 2 \nabla_k Z^k)\). More... | |
struct | LapseTimesSlicingCondition |
The CCZ4 temporary expression \(\alpha g(\alpha)\). More... | |
struct | LogConformalFactor |
The natural log of the conformal factor. More... | |
struct | LogLapse |
The natural log of the lapse. More... | |
struct | Ricci |
The spatial Ricci tensor. More... | |
struct | RicciScalarPlusDivergenceZ4Constraint |
The sum of the Ricci scalar and twice the divergence of the upper spatial Z4 constraint. More... | |
struct | ShiftTimesDerivGammaHat |
The CCZ4 temporary expression \(\beta^k \partial_k \hat{\Gamma}^i\). More... | |
struct | SpatialZ4Constraint |
The spatial part of the Z4 constraint. More... | |
struct | SpatialZ4ConstraintUp |
The spatial part of the upper Z4 constraint. More... | |
struct | TraceATilde |
The trace of the trace-free part of the extrinsic curvature. More... | |
Typedefs | |
template<typename DataType , size_t Dim, typename Frame > | |
using | ConformalMetric = gr::Tags::Conformal< gr::Tags::SpatialMetric< DataType, Dim, Frame >, 2 > |
The conformally scaled spatial metric. More... | |
template<typename DataType , size_t Dim, typename Frame > | |
using | InverseConformalMetric = gr::Tags::Conformal< gr::Tags::InverseSpatialMetric< DataType, Dim, Frame >, -2 > |
The conformally scaled inverse spatial metric. More... | |
Tags for the CCZ4 formulation of Einstein equations.
using Ccz4::Tags::ConformalMetric = typedef gr::Tags::Conformal<gr::Tags::SpatialMetric<DataType, Dim, Frame>, 2> |
The conformally scaled spatial metric.
If \(\phi\) is the conformal factor and \(\gamma_{ij}\) is the spatial metric, then we define \(\bar{\gamma}_{ij} = \phi^2 \gamma_{ij}\).
using Ccz4::Tags::InverseConformalMetric = typedef gr::Tags::Conformal<gr::Tags::InverseSpatialMetric<DataType, Dim, Frame>, -2> |
The conformally scaled inverse spatial metric.
If \(\phi\) is the conformal factor and \(\gamma^{ij}\) is the inverse spatial metric, then we define \(\bar{\gamma}^{ij} = \phi^{-2} \gamma^{ij}\).