SpECTRE
v2025.03.17
|
XCTS quantities for a solution of the Einstein equations. More...
Public Types | |
using | options = typename GrSolution::options |
Public Member Functions | |
WrappedGr (const WrappedGr &)=default | |
WrappedGr & | operator= (const WrappedGr &)=default |
WrappedGr (WrappedGr &&)=default | |
WrappedGr & | operator= (WrappedGr &&)=default |
template<typename... Args, Requires< std::is_constructible_v< GrSolution, Args... > > = nullptr> | |
WrappedGr (Args &&... args) | |
const GrSolution & | gr_solution () const |
template<typename DataType , typename... RequestedTags> | |
tuples::TaggedTuple< RequestedTags... > | variables (const tnsr::I< DataType, 3, Frame::Inertial > &x, tmpl::list< RequestedTags... >) const |
template<typename DataType , typename... RequestedTags> | |
tuples::TaggedTuple< RequestedTags... > | variables (const tnsr::I< DataType, 3, Frame::Inertial > &x, const Mesh< 3 > &mesh, const InverseJacobian< DataVector, 3, Frame::ElementLogical, Frame::Inertial > &inv_jacobian, tmpl::list< RequestedTags... >) const |
void | pup (PUP::er &p) override |
![]() | |
virtual std::unique_ptr< AnalyticSolution > | get_clone () const =0 |
Static Public Member Functions | |
static std::string | name () |
Static Public Attributes | |
static constexpr size_t | Dim = 3 |
static constexpr Options::String | help = GrSolution::help |
Friends | |
bool | operator== (const WrappedGr< GrSolution, HasMhd > &lhs, const WrappedGr< GrSolution, HasMhd > &rhs) |
XCTS quantities for a solution of the Einstein equations.
This class computes all XCTS quantities from the GrSolution
. To do so, it chooses the conformal factor
so the spatial metric of the GrSolution
is used as conformal metric, \(\bar{\gamma}_{ij = \gamma_{ij}\). This is particularly useful for superpositions, because it means that the superposed conformal metric of two WrappedGr
solutions is probably a good conformal background to solve for a binary solution (see Xcts::AnalyticData::Binary).
For example, when the GrSolution
is gr::Solutions::KerrSchild
, the conformal metric is the spatial Kerr metric in Kerr-Schild coordinates and
GrSolution
is actually a solution to the Einstein equations), then the XCTS solve will reproduce the GR quantities given the fixed sources computed here. However, if the GR quantities don't satisfy the Einstein constraints (e.g. because a magnetic field was added to the solution but ignored in the gravity sector, or because it is a hydrodynamic solution on a fixed background metric) then the XCTS solution will depend on our treatment of the source terms: fixing the source terms (the simple approach taken here) means we're making a choice of GrSolution | Any solution to the Einstein constraint equations |
HasMhd | Enable to compute matter source terms. Disable to set matter source terms to zero. |