SpECTRE  v2025.03.17
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
Cce::InnerBoundaryWeyl Struct Reference

Compute the Weyl scalar Ψ0 and its radial derivative λΨ0 on the inner boundary of CCE domain. The quantities are in the Cauchy coordinates. More...

#include <NewmanPenrose.hpp>

Public Types

using return_tags = implementation defined
 
using argument_tags = implementation defined
 

Static Public Member Functions

static void apply (gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 2 > > * > psi_0_boundary, gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 2 > > * > dlambda_psi_0_boundary, const Scalar< SpinWeighted< ComplexDataVector, 2 > > &psi_0, const Scalar< SpinWeighted< ComplexDataVector, 2 > > &dy_psi_0, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &one_minus_y, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &bondi_r_cauchy, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &bondi_beta_cauchy, const size_t l_max)
 

Detailed Description

Compute the Weyl scalar Ψ0 and its radial derivative λΨ0 on the inner boundary of CCE domain. The quantities are in the Cauchy coordinates.

Details

The radial derivative of the Weyl scalar λΨ0 is given by

λΨ0=(1y)22re2βyΨ0

Note that (1y), r, and β are in the Cauchy coordinates, where (1y) is invariant under the coordinate transformation, while r and β transform as

r=ωr^β=β^12logω


The documentation for this struct was generated from the following file: