SpECTRE
v2024.12.16
|
Update the Cauchy gauge cartesian coordinate derivative
#include <GaugeTransformBoundaryData.hpp>
Public Types | |
using | return_tags = implementation defined |
using | argument_tags = implementation defined |
Static Public Member Functions | |
static void | apply (gsl::not_null< tnsr::i< DataVector, 3 > * > cartesian_cauchy_du_x, gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 1 > > * > evolution_gauge_u_at_scri, gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 1 > > * > volume_u, gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 0 > > * > du_omega, const tnsr::i< DataVector, 3 > &cartesian_cauchy_coordinates, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &omega, const Scalar< SpinWeighted< ComplexDataVector, 1 > > ð_omega, size_t l_max) |
Update the Cauchy gauge cartesian coordinate derivative
The constraint we must satisfy to maintain the asymptotically inertial angular coordinates is
which we compute for a representative Cartesian coordinate set on the unit sphere, to maintain representability and ensure that angular transform and derivative operations keep the desired precision. The equation we use for the Cartesian analog is:
This computation completes the unfixed degrees of freedom for the coordinate transformation at the boundary, so also computes the gauge quantities that rely on this information
The time derivative of
Cce::Tags::BondiU
represents