SpECTRE  v2024.06.18
Cce::ComputeKleinGordonSource< Tags::BondiW > Struct Reference

Computes the Klein-Gordon source of the Bondi \(W\). More...

#include <KleinGordonSource.hpp>

Public Types

using return_tags = tmpl::list< Tags::KleinGordonSource< Tags::BondiW > >
 
using argument_tags = tmpl::list< Tags::Exp2Beta, Tags::BondiR, Tags::BondiK, Tags::BondiJ, Spectral::Swsh::Tags::Derivative< Tags::KleinGordonPsi, Spectral::Swsh::Tags::Eth > >
 

Static Public Member Functions

static void apply (gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 0 > > * > kg_source_w, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &exp_2_beta, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &bondi_r, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &bondi_k, const Scalar< SpinWeighted< ComplexDataVector, 2 > > &bondi_j, const Scalar< SpinWeighted< ComplexDataVector, 1 > > &eth_kg_psi)
 

Detailed Description

Computes the Klein-Gordon source of the Bondi \(W\).

Details

Following the nomenclature of [135] and their Eq. (49), the scalar field contributes only to the regular part of the source term \(S_2^R\). The expression reads:

\begin{align*} \frac{\pi e^{2\beta}}{R} \left[J(\bar{\eth}\psi)^2 + \bar{J}(\eth \psi)^2-2K \eth\psi\bar{\eth}\psi\right], \end{align*}

where \(\psi\) is the Klein-Gordon (scalar) field.


The documentation for this struct was generated from the following file: