SpECTRE
v2024.08.03
|
Computes the integrand (right-hand side) of the equation which determines the radial (y) dependence of the Bondi quantity \(\beta\). More...
#include <Equations.hpp>
Public Types | |
using | pre_swsh_derivative_tags = tmpl::list< Tags::Dy< Tags::BondiJ >, Tags::BondiJ > |
using | swsh_derivative_tags = tmpl::list<> |
using | integration_independent_tags = tmpl::list< Tags::OneMinusY > |
using | temporary_tags = tmpl::list<> |
using | return_tags = tmpl::append< tmpl::list< Tags::Integrand< Tags::BondiBeta > >, temporary_tags > |
using | argument_tags = tmpl::append< pre_swsh_derivative_tags, swsh_derivative_tags, integration_independent_tags > |
Static Public Member Functions | |
template<typename... Args> | |
static void | apply (const gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 0 > > * > integrand_for_beta, const Args &... args) |
Computes the integrand (right-hand side) of the equation which determines the radial (y) dependence of the Bondi quantity \(\beta\).
The quantity \(\beta\) is defined via the Bondi form of the metric:
\[ ds^2 = - \left(e^{2 \beta} (1 + r W) - r^2 h_{AB} U^A U^B\right) du^2 - 2 e^{2 \beta} du dr - 2 r^2 h_{AB} U^B du dx^A + r^2 h_{A B} dx^A dx^B. \]
Additional quantities \(J\) and \(K\) are defined using a spherical angular dyad \(q^A\):
\[ J \equiv h_{A B} q^A q^B, K \equiv h_{A B} q^A \bar{q}^B.\]
See [20] [82] for full details.
We write the equations of motion in the compactified coordinate \( y \equiv 1 - 2 R/ r\), where \(r(u, \theta, \phi)\) is the Bondi radius of the \(y=\) constant surface and \(R(u,\theta,\phi)\) is the Bondi radius of the worldtube. The equation which determines \(\beta\) on a surface of constant \(u\) given \(J\) on the same surface is
\[\partial_y (\beta) = \frac{1}{8} (-1 + y) \left(\partial_y (J) \partial_y(\bar{J}) - \frac{(\partial_y (J \bar{J}))^2}{4 K^2}\right). \]