SpECTRE  v2025.03.17
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
grmhd::ValenciaDivClean::PrimitiveRecoverySchemes::KastaunEtAl Class Reference

Compute the primitive variables from the conservative variables using the scheme of [106]. More...

#include <KastaunEtAl.hpp>

Static Public Member Functions

template<bool EnforcePhysicality, typename EosType >
static std::optional< PrimitiveRecoveryDataapply (double initial_guess_pressure, double tau, double momentum_density_squared, double momentum_density_dot_magnetic_field, double magnetic_field_squared, double rest_mass_density_times_lorentz_factor, double electron_fraction, const EosType &equation_of_state, const grmhd::ValenciaDivClean::PrimitiveFromConservativeOptions &primitive_from_conservative_options)
 
static const std::string name ()
 

Detailed Description

Compute the primitive variables from the conservative variables using the scheme of [106].

In the notation of the Kastaun paper, tau is Dq), momentum_density_squared is r2D2, momentum_density_dot_magnetic_field is tD32, magnetic_field_squared is sD, and rest_mass_density_times_lorentz_factor is D. Furthermore, the returned PrimitiveRecoveryData.rho_h_w_squared is xD.

In terms of the conservative variables (in our notation):

q=τ~D~r=γklS~kS~lD~2t2=(B~kS~k)2D~3γs=γklB~kB~lD~γ

where the conserved variables D~, S~i, τ~, and B~i are a generalized mass-energy density, momentum density, specific internal energy density, and magnetic field, and γ and γkl are the determinant and inverse of the spatial metric γkl.

Note
This scheme does not use the initial guess for the pressure.

The documentation for this class was generated from the following file: