Public Member Functions | Friends | List of all members
domain::FunctionsOfTime::SettleToConstant Class Reference

Given an initial function of time, transitions the map to a constant-in-time value. More...

#include <SettleToConstant.hpp>

Public Member Functions

 SettleToConstant (const std::array< DataVector, 3 > &initial_func_and_derivs, double match_time, double decay_time) noexcept
 
 SettleToConstant (SettleToConstant &&) noexcept=default
 
SettleToConstantoperator= (SettleToConstant &&) noexcept=default
 
 SettleToConstant (const SettleToConstant &)=default
 
SettleToConstantoperator= (const SettleToConstant &)=default
 
 WRAPPED_PUPable_decl_template (SettleToConstant)
 
 SettleToConstant (CkMigrateMessage *)
 
auto get_clone () const noexcept -> std::unique_ptr< FunctionOfTime > override
 
std::array< DataVector, 1 > func (const double t) const noexcept override
 Returns the function at an arbitrary time t.
 
std::array< DataVector, 2 > func_and_deriv (const double t) const noexcept override
 Returns the function and its first derivative at an arbitrary time t.
 
std::array< DataVector, 3 > func_and_2_derivs (const double t) const noexcept override
 Returns the function and the first two derivatives at an arbitrary time t.
 
std::array< double, 2 > time_bounds () const noexcept override
 Returns the domain of validity of the function.
 
void pup (PUP::er &p) override
 
- Public Member Functions inherited from domain::FunctionsOfTime::FunctionOfTime
 FunctionOfTime (FunctionOfTime &&) noexcept=default
 
FunctionOfTimeoperator= (FunctionOfTime &&) noexcept=default
 
 FunctionOfTime (const FunctionOfTime &)=default
 
FunctionOfTimeoperator= (const FunctionOfTime &)=default
 
 WRAPPED_PUPable_abstract (FunctionOfTime)
 

Friends

bool operator== (const SettleToConstant &lhs, const SettleToConstant &rhs) noexcept
 

Detailed Description

Given an initial function of time, transitions the map to a constant-in-time value.

Given an initial function \(f(t)\) and its first two derivatives at the matching time \(t_0\), the constant coefficients \(A,B,C\) are computed such that the resulting function of time \(g(t)\) satisfies \(g(t=t_0)=f(t=t_0)\) and approaches a constant value for \(t > t_0\) on a timescale of \(\tau\). The resultant function is

\[ g(t) = A + (B+C(t-t_0)) e^{-(t-t_0)/\tau} \]

where \(\tau\)=decay_time and \(t_0\)=match_time.


The documentation for this class was generated from the following files: