h-refine the grid based on a smoothness indicator
More...
#include <Loehner.hpp>
|
| Loehner (std::vector< std::string > vars_to_monitor, double relative_tolerance, double absolute_tolerance, double coarsening_factor, const Options::Context &context={}) |
|
template<typename DbTagsList , typename Metavariables > |
std::array< Flag, Dim > | operator() (const db::DataBox< DbTagsList > &box, Parallel::GlobalCache< Metavariables > &cache, const ElementId< Dim > &element_id) const |
|
void | pup (PUP::er &p) override |
|
| Criterion (CkMigrateMessage *msg) |
|
| WRAPPED_PUPable_abstract (Criterion) |
|
template<typename ComputeTagsList , typename DataBoxType , typename Metavariables > |
auto | evaluate (const ObservationBox< ComputeTagsList, DataBoxType > &box, Parallel::GlobalCache< Metavariables > &cache, const ElementId< Metavariables::volume_dim > &element_id) const |
| Evaluates the AMR criteria by selecting the appropriate derived class and forwarding its argument_tags from the ObservationBox (along with the GlobalCache and ArrayIndex) to the call operator of the derived class. More...
|
|
template<size_t Dim, typename TensorTags>
class amr::Criteria::Loehner< Dim, TensorTags >
h-refine the grid based on a smoothness indicator
The smoothness indicator used here is based on the magnitude of second derivatives. See amr::Criteria::loehner_smoothness_indicator
for details and caveats.
- See also
- amr::Criteria::loehner_smoothness_indicator
◆ help
template<size_t Dim, typename TensorTags >
Initial value:= {
"Refine the grid towards resolving an estimated error in the second "
"derivative"}
The documentation for this class was generated from the following file:
- src/ParallelAlgorithms/Amr/Criteria/Loehner.hpp