SpECTRE  v2025.08.19
ScalarSelfForce::AnalyticData::CircularOrbit Class Reference

Scalar self force for a scalar charge on a circular equatorial orbit. More...

#include <CircularOrbit.hpp>

Classes

struct  BlackHoleMass
 
struct  BlackHoleSpin
 
struct  HyperboloidalSlicingTransitions
 
struct  MModeNumber
 
struct  OrbitalRadius
 

Public Types

using options = tmpl::list< BlackHoleMass, BlackHoleSpin, OrbitalRadius, MModeNumber, HyperboloidalSlicingTransitions >
 
using background_tags = tmpl::list< Tags::Alpha, Tags::Beta, Tags::Gamma >
 
using source_tags = tmpl::list< ::Tags::FixedSource< Tags::MMode >, Tags::SingularField, ::Tags::deriv< Tags::SingularField, tmpl::size_t< 2 >, Frame::Inertial >, Tags::BoyerLindquistRadius >
 

Public Member Functions

 CircularOrbit (const CircularOrbit &)=default
 
CircularOrbitoperator= (const CircularOrbit &)=default
 
 CircularOrbit (CircularOrbit &&)=default
 
CircularOrbitoperator= (CircularOrbit &&)=default
 
 CircularOrbit (double black_hole_mass, double black_hole_spin, double orbital_radius, int m_mode_number, std::optional< std::array< double, 4 > > hyperboloidal_slicing_transitions)
 
 CircularOrbit (CkMigrateMessage *m)
 
 WRAPPED_PUPable_decl_template (CircularOrbit)
 
tnsr::I< double, 2 > puncture_position () const
 
double black_hole_mass () const
 
double black_hole_spin () const
 
double orbital_radius () const
 
int m_mode_number () const
 
std::optional< std::array< double, 4 > > hyperboloidal_slicing_transitions () const
 
tuples::tagged_tuple_from_typelist< background_tags > variables (const tnsr::I< DataVector, 2 > &x, background_tags) const
 
tuples::tagged_tuple_from_typelist< source_tags > variables (const tnsr::I< DataVector, 2 > &x, source_tags) const
 
template<typename... RequestedTags>
tuples::TaggedTuple< RequestedTags... > variables (const tnsr::I< DataVector, 2 > &x, const Mesh< 2 > &, const InverseJacobian< DataVector, 2, Frame::ElementLogical, Frame::Inertial > &, tmpl::list< RequestedTags... >) const
 
void pup (PUP::er &p) override
 

Static Public Member Functions

static tuples::TaggedTuple< Tags::MModevariables (const tnsr::I< DataVector, 2 > &x, tmpl::list< Tags::MMode >)
 

Static Public Attributes

static constexpr Options::String help
 

Friends

bool operator== (const CircularOrbit &lhs, const CircularOrbit &rhs)
 

Detailed Description

Scalar self force for a scalar charge on a circular equatorial orbit.

This class implements Eq. (2.9) in [158] . It does so by defining the background fields \(\alpha\), \(\beta\), and \(\gamma_i\) in the general form of the equations

\begin{equation} -\partial_i F^i + \beta \Psi_m + \gamma_i F^i = S_m \text{.} \end{equation}

with the flux

\begin{equation} F^i = \{\partial_{r_\star}, \alpha \partial_{\cos\theta}\} \Psi_m \text{.} \end{equation}

Note that we use \(\cos\theta\) as angular coordinate but [158] uses \(\theta\). We also multiply Eq. (2.9) by the factor \(\Sigma^2 / (r^2 + a^2)^2\) so we can easily write it in first-order flux form. The resulting factors in the equation are:

\begin{align} &\alpha = \frac{\Delta}{(r^2 + a^2)^2} \sin^2\theta \\ &\beta = \left(-m^2\Omega^2 \Sigma^2 + 4a m^2 \Omega M r + \Delta \left[ \frac{m^2}{\sin^2\theta} + \frac{2M}{r}(1-\frac{a^2}{Mr}) + \frac{2iam}{r} \right]\right) \frac{1}{(r^2 + a^2)^2} \\ &\gamma_{r_\star} = -\frac{2iam}{r^2+a^2} + \frac{2a^2}{r} \frac{\alpha}{\sin^2\theta} \\ &\gamma_{\cos\theta} = 0 \end{align}

This class also provides the effective source \(S_m^\mathrm{eff} = \Delta_m \Psi_m^P\) and the singular field \(\Psi_m^P\) in the regularized region (see ScalarSelfForce::FirstOrderSystem and Sec. III in [158] ). The effective source is computed using the scalar EffectiveSource code by Wardell et. al. (https://github.com/barrywardell/EffectiveSource and [211] ). It is then transformed to correspond to the m-mode decomposition used in [158] Eq. (2.8) as:

\begin{align} &\Psi_m^P = \frac{r}{2 \pi} e^{-i m \Delta\phi} \Phi_m^\mathrm{Wardell} \\ &S_m^\mathrm{eff} = \frac{r}{2 \pi} e^{-i m \Delta\phi} \frac{\Delta\,(r^2 + a^2\cos^2\theta)}{(r^2 + a^2)^2} S_m^\mathrm{Wardell} \text{,} \end{align}

where \(\Delta\phi = \frac{a}{r_+ - r_-} \ln(\frac{r-r_+}{r-r_-})\) (Eq. (2.7) in [158] ).

Hyperboloidal slicing
Transforming to a hyperboloidal time coordinate \(s = t - h(r_*)\) can simplify the solution a lot because the slice will only intersect a finite number of wave fronts. In frequency domain this transformation means that partial derivatives transform as:

\begin{align} &\partial_{r_*} \rightarrow \partial_{r_*} + i m\Omega H(r_*) \\ &\partial_{r_*}^2 \rightarrow \partial_{r_*}^2 + 2 i m\Omega H(r_*) \partial_{r_*} + i m\Omega H'(r_*) -m^2\Omega^2 H(r_*)^2 \end{align}

where \(H(r_*) = h'(r_*)\) is the boost function that asymptotes to \(H(r_* \rightarrow \pm \infty) = \pm 1\). This maps to the following additional terms in \(\beta\) and \(\gamma_{r_*}\):

\begin{align} &\beta \rightarrow \beta + i m\Omega \gamma_{r_*} H(r_*) - i m\Omega H'(r_*) + m^2\Omega^2 H(r_*)^2 \\ &\gamma_{r_*} \rightarrow \gamma_{r_*} - 2 i m\Omega H(r_*) \end{align}

For the boost function we choose here a simple sigmoid so that it is exactly zero in a finite region around the puncture where we apply the effective source, and transitions to -1 and 1 outside of this region. We choose the \(C^1\) continuous smoothstep<1> for this. Reasonable transition points are from the boundaries of the effective source region to about \(20M\) away from it, though this hasn't been tested very much yet. We may also want to try jumping from \(H=0\) to \(H=\pm 1\) discontinuously at the boundary of the effective source region, which is supported by the DG scheme (see fluxes_computer::is_discontinuous in elliptic::protocols::FirstOrderSystem), so (1) we don't have to resolve the transition, and (2) we can more easily support the 2nd order self-force source.

Member Data Documentation

◆ help

constexpr Options::String ScalarSelfForce::AnalyticData::CircularOrbit::help
staticconstexpr
Initial value:
=
"Quasicircular orbit of a scalar point charge in Kerr spacetime"

The documentation for this class was generated from the following file: