SpECTRE
v2022.08.01

Hybrid equation of state combining a barotropic EOS for cold (zerotemperature) part with a simple thermal part. More...
#include <HybridEos.hpp>
Classes  
struct  ColdEos 
struct  ThermalAdiabaticIndex 
Public Types  
using  options = tmpl::list< ColdEos, ThermalAdiabaticIndex > 
Public Member Functions  
HybridEos (const HybridEos &)=default  
HybridEos &  operator= (const HybridEos &)=default 
HybridEos (HybridEos &&)=default  
HybridEos &  operator= (HybridEos &&)=default 
HybridEos (ColdEquationOfState cold_eos, double thermal_adiabatic_index)  
WRAPPED_PUPable_decl_base_template (SINGLE_ARG(EquationOfState< is_relativistic, 2 >), HybridEos)  
double  rest_mass_density_lower_bound () const override 
The lower bound of the rest mass density that is valid for this EOS.  
double  rest_mass_density_upper_bound () const override 
The upper bound of the rest mass density that is valid for this EOS.  
double  specific_internal_energy_lower_bound (const double rest_mass_density) const override 
The lower bound of the specific internal energy that is valid for this EOS at the given rest mass density \(\rho\).  
double  specific_internal_energy_upper_bound (const double) const override 
The upper bound of the specific internal energy that is valid for this EOS at the given rest mass density \(\rho\).  
double  specific_enthalpy_lower_bound () const override 
The lower bound of the specific enthalpy that is valid for this EOS.  
Static Public Attributes  
static constexpr size_t  thermodynamic_dim = 2 
static constexpr bool  is_relativistic = ColdEquationOfState::is_relativistic 
static constexpr Options::String  help 
Hybrid equation of state combining a barotropic EOS for cold (zerotemperature) part with a simple thermal part.
The hybrid equation of state:
\[ p = p_{cold}(\rho) + \rho (\Gamma_{th}1) (\epsilon  \epsilon_{cold}(\rho)) \]
where \(p\) is the pressure, \(\rho\) is the rest mass density, \(\epsilon\) is the specific internal energy, \(p_{cold}\) and \(\epsilon_{cold}\) are the pressure and specific internal energy evaluated using the cold EOS, and \(\Gamma_{th}\) is the adiabatic index for the thermal part.
The temperature \(T\) is defined as
\[ T = (\Gamma_{th}  1) (\epsilon  \epsilon_{cold}) \]

staticconstexpr 