SpECTRE
v2024.09.29
|
Computes the leading part of the strain \(h\) near \(\mathcal I^+\). More...
#include <ScriPlusValues.hpp>
Public Types | |
using | return_tags = tmpl::list< Tags::ScriPlus< Tags::Strain > > |
using | tensor_argument_tags = tmpl::list< Tags::Dy< Tags::BondiJ >, Spectral::Swsh::Tags::Derivative< Tags::ComplexInertialRetardedTime, Spectral::Swsh::Tags::EthEth >, Tags::EvolutionGaugeBoundaryValue< Tags::BondiR > > |
using | argument_tags = tmpl::push_back< tensor_argument_tags, Tags::LMax, Tags::NumberOfRadialPoints > |
Static Public Member Functions | |
static void | apply (gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, -2 > > * > strain, const Scalar< SpinWeighted< ComplexDataVector, 2 > > &dy_bondi_j, const Scalar< SpinWeighted< ComplexDataVector, 2 > > ð_eth_retarded_time, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &boundary_r, size_t l_max, size_t number_of_radial_points) |
Computes the leading part of the strain \(h\) near \(\mathcal I^+\).
The value \(h\) scales asymptotically as \(r^{-1}\), and has the form (in the coordinates used for regularity preserving CCE)
\begin{align*} h = \bar J^{(1)} + \bar \eth \bar \eth u^{(0)}, \end{align*}
where \(u^{(0)}\) is the asymptotically inertial retarded time, and \(A^{(n)}\) is the \(1/r^n\) part of \(A\) evaluated at \(\mathcal I^+\), so for any quantity \(A\),
\begin{align*} A^{(1)} = (- 2 R \partial_y A)|_{y = 1}, \end{align*}
where the expansion is determined by the conversion between Bondi and numerical radii \(r = 2 R / (1 - y)\).