SpECTRE
v2024.09.29
|
Computes the leading part of \(\Psi_3\) near \(\mathcal I^+\). More...
#include <ScriPlusValues.hpp>
Public Types | |
using | return_tags = tmpl::list< Tags::ScriPlus< Tags::Psi3 > > |
using | tensor_argument_tags = tmpl::list< Tags::Exp2Beta, Spectral::Swsh::Tags::Derivative< Tags::BondiBeta, Spectral::Swsh::Tags::Eth >, Spectral::Swsh::Tags::Derivative< Tags::BondiBeta, Spectral::Swsh::Tags::EthEthbar >, Spectral::Swsh::Tags::Derivative< Spectral::Swsh::Tags::Derivative< Tags::BondiBeta, Spectral::Swsh::Tags::EthEthbar >, Spectral::Swsh::Tags::Ethbar >, Tags::Dy< Tags::Du< Tags::BondiJ > >, Spectral::Swsh::Tags::Derivative< Tags::Dy< Tags::Du< Tags::BondiJ > >, Spectral::Swsh::Tags::Ethbar >, Tags::EvolutionGaugeBoundaryValue< Tags::BondiR >, Tags::EthRDividedByR > |
using | argument_tags = tmpl::push_back< tensor_argument_tags, Tags::LMax, Tags::NumberOfRadialPoints > |
Static Public Member Functions | |
static void | apply (gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, -1 > > * > psi_3, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &exp_2_beta, const Scalar< SpinWeighted< ComplexDataVector, 1 > > ð_beta, const Scalar< SpinWeighted< ComplexDataVector, 0 > > ð_ethbar_beta, const Scalar< SpinWeighted< ComplexDataVector, -1 > > ðbar_eth_ethbar_beta, const Scalar< SpinWeighted< ComplexDataVector, 2 > > &dy_du_bondi_j, const Scalar< SpinWeighted< ComplexDataVector, 1 > > ðbar_dy_du_bondi_j, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &boundary_r, const Scalar< SpinWeighted< ComplexDataVector, 1 > > ð_r_divided_by_r, size_t l_max, size_t number_of_radial_points) |
Computes the leading part of \(\Psi_3\) near \(\mathcal I^+\).
The value \(\Psi_3\) scales asymptotically as \(r^{-2}\), and has the form (in the coordinates used for regularity preserving CCE)
\begin{align*} \Psi_3^{(2)} = 2 \bar \eth \beta^{(0)} + 4 \bar \eth \beta^{(0)} \eth \bar \eth \beta^{(0)} + \bar \eth \eth \bar \eth \beta^{(0)} + \frac{e^{-2 \beta^{(0)}}}{2} \eth \partial_u \bar J^{(1)} - e^{-2 \beta^{(0)}} \eth \beta^{(0)} \partial_u \bar J^{(1)} \end{align*}
,
where \(J^{(n)}\) is the \(1/r^n\) part of \(J\) evaluated at \(\mathcal I^+\), so
\begin{align*} J^{(1)} = (-2 R \partial_y J)|_{y = 1}, \end{align*}
where the expansion is determined by the conversion between Bondi and numerical radii \(r = 2 R / (1 - y)\).