SpECTRE
v2025.01.30
|
Computes the leading part of the scalar field \(\psi\) near \(\mathcal I^+\). More...
#include <ScriPlusValues.hpp>
Public Types | |
using | return_tags = tmpl::list< Tags::ScriPlus< Tags::KleinGordonPsi > > |
using | tensor_argument_tags = tmpl::list< Tags::Dy< Tags::KleinGordonPsi >, Tags::EvolutionGaugeBoundaryValue< Tags::BondiR > > |
using | argument_tags = tmpl::push_back< tensor_argument_tags, Tags::LMax, Tags::NumberOfRadialPoints > |
Static Public Member Functions | |
static void | apply (gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, 0 > > * > kg_psi_scri, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &dy_kg_psi, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &boundary_r, size_t l_max, size_t number_of_radial_points) |
Computes the leading part of the scalar field \(\psi\) near \(\mathcal I^+\).
The value \(\psi\) scales asymptotically as \(r^{-1}\). Assuming \(\psi^{(n)}\) is the \(1/r^n\) part of \(\psi\) evaluated at \(\mathcal I^+\), so for any \(\psi\),
\begin{align*} \psi^{(1)} = (- 2 R \partial_y \psi)|_{y = 1}, \end{align*}
where the expansion is determined by the conversion between Bondi and numerical radii \(r = 2 R / (1 - y)\).