SpECTRE
v2024.09.29
|
Specialization for the spin-weighted derivative \(\eth\). More...
#include <SwshDerivatives.hpp>
Public Types | |
using | pre_swsh_derivative_tags = tmpl::list<> |
using | swsh_derivative_tags = tmpl::list<> |
using | integration_independent_tags = tmpl::list< Tags::OneMinusY, Tags::EthRDividedByR > |
using | return_tags = tmpl::list< Spectral::Swsh::Tags::Derivative< ArgumentTag, Spectral::Swsh::Tags::Eth > > |
using | argument_tags = tmpl::append< integration_independent_tags > |
using | on_demand_argument_tags = tmpl::list< Tags::Dy< ArgumentTag > > |
Static Public Member Functions | |
template<typename DyArgumentType > | |
static void | apply (const gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, spin > > * > eth_argument, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &one_minus_y, const Scalar< SpinWeighted< ComplexDataVector, 1 > > ð_r_divided_by_r, const DyArgumentType &dy_argument) |
Static Public Attributes | |
static constexpr int | spin |
Specialization for the spin-weighted derivative \(\eth\).
The implemented equation is:
\[ \eth F = \eth^\prime F - (1 - y) \frac{\eth R}{R} \partial_y F, \]
where \(\eth\) is the derivative at constant Bondi radius \(r\) and \(\eth^\prime\) is the derivative at constant numerical radius \(y\).
|
staticconstexpr |