SpECTRE
v2024.08.03
|
Specialization for the spin-weighted derivative \(\eth \bar{\eth}\). More...
#include <SwshDerivatives.hpp>
Public Types | |
using | pre_swsh_derivative_tags = tmpl::list<> |
using | swsh_derivative_tags = tmpl::list<> |
using | integration_independent_tags = tmpl::list< Tags::OneMinusY, Tags::EthRDividedByR, Tags::EthEthbarRDividedByR > |
using | return_tags = tmpl::list< Spectral::Swsh::Tags::Derivative< ArgumentTag, Spectral::Swsh::Tags::EthEthbar > > |
using | argument_tags = tmpl::append< integration_independent_tags > |
using | on_demand_argument_tags = tmpl::list< Tags::Dy< ArgumentTag >, Tags::Dy< Tags::Dy< ArgumentTag > >, Spectral::Swsh::Tags::Derivative< Tags::Dy< ArgumentTag >, Spectral::Swsh::Tags::Eth >, Spectral::Swsh::Tags::Derivative< Tags::Dy< ArgumentTag >, Spectral::Swsh::Tags::Ethbar > > |
Static Public Member Functions | |
template<typename DyArgumentType , typename DyDyArgumentType , typename EthDyArgumentType , typename EthbarDyArgumentType > | |
static void | apply (const gsl::not_null< Scalar< SpinWeighted< ComplexDataVector, spin > > * > eth_ethbar_argument, const Scalar< SpinWeighted< ComplexDataVector, 0 > > &one_minus_y, const Scalar< SpinWeighted< ComplexDataVector, 1 > > ð_r_divided_by_r, const Scalar< SpinWeighted< ComplexDataVector, 0 > > ð_ethbar_r_divided_by_r, const DyArgumentType &dy_argument, const DyDyArgumentType &dy_dy_argument, const EthDyArgumentType ð_dy_argument, const EthbarDyArgumentType ethbar_dy_argument) |
Static Public Attributes | |
static constexpr int | spin |
Specialization for the spin-weighted derivative \(\eth \bar{\eth}\).
The implemented equation is:
\[ \eth \bar{\eth} F = \eth^\prime \bar{\eth}^\prime F - \frac{\eth R \bar{\eth} R}{R^2} (1 - y)^2 \partial_y^2 F - (1 - y)\left(\frac{\eth R}{R} \bar{\eth} \partial_y F + \frac{\bar{\eth} R}{R} \eth \partial_y F + \frac{\eth \bar\eth R}{R} \partial_y F\right), \]
where \(\eth \bar{\eth}\) is the derivative at constant Bondi radius \(r\) and \(\eth^\prime \bar{\eth}^\prime\) is the derivative at constant numerical radius \(y\).
|
staticconstexpr |