SpECTRE
v2025.03.17
|
Items for assessing truncation error in spectral methods. More...
Functions | |
template<size_t Dim> | |
std::array< double, Dim > | relative_truncation_error (const DataVector &tensor_component, const Mesh< Dim > &mesh) |
The relative truncation error in each logical direction of the grid. More... | |
template<size_t Dim> | |
void | power_monitors (gsl::not_null< std::array< DataVector, Dim > * > result, const DataVector &u, const Mesh< Dim > &mesh) |
Returns array of power monitors in each spatial dimension. More... | |
template<size_t Dim> | |
std::array< DataVector, Dim > | power_monitors (const DataVector &u, const Mesh< Dim > &mesh) |
Returns array of power monitors in each spatial dimension. More... | |
double | relative_truncation_error (const DataVector &power_monitor, const size_t num_modes_to_use) |
Compute the negative log10 of the relative truncation error. More... | |
template<size_t Dim> | |
std::array< double, Dim > | absolute_truncation_error (const DataVector &tensor_component, const Mesh< Dim > &mesh) |
Returns an estimate of the absolute truncation error in each dimension. More... | |
Items for assessing truncation error in spectral methods.
std::array< double, Dim > PowerMonitors::relative_truncation_error | ( | const DataVector & | tensor_component, |
const Mesh< Dim > & | mesh | ||
) |
The relative truncation error in each logical direction of the grid.
This overload is intended for visualization purposes only. It takes a tensor component as input, so it can be used as a kernel to post-process volume data with Python bindings (see TransformVolumeData.py
).
This function returns the relative truncation error directly, as opposed to the other overload that returns the negative log10 of the relative truncation error.