SpECTRE  v2025.03.17
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
grmhd::ValenciaDivClean::PrimitiveRecoverySchemes::PalenzuelaEtAl Class Reference

Compute the primitive variables from the conservative variables using the scheme of Palenzuela et al, Phys. Rev. D 92, 044045 (2015). More...

#include <PalenzuelaEtAl.hpp>

Static Public Member Functions

template<bool EnforcePhysicality, typename EosType >
static std::optional< PrimitiveRecoveryDataapply (double, double tau, double momentum_density_squared, double momentum_density_dot_magnetic_field, double magnetic_field_squared, double rest_mass_density_times_lorentz_factor, double electron_fraction, const EosType &equation_of_state, const grmhd::ValenciaDivClean::PrimitiveFromConservativeOptions &primitive_from_conservative_options)
 
static const std::string name ()
 

Detailed Description

Compute the primitive variables from the conservative variables using the scheme of Palenzuela et al, Phys. Rev. D 92, 044045 (2015).

In the notation of the Palenzuela paper, tau is Dq, momentum_density_squared is r2D2, momentum_density_dot_magnetic_field is tD32, magnetic_field_squared is sD, and rest_mass_density_times_lorentz_factor is D. Furthermore, the returned PrimitiveRecoveryData.rho_h_w_squared is xD. Note also that h in the Palenzuela paper is the specific enthalpy times the rest mass density.

In terms of the conservative variables (in our notation):

q=τ~D~r=γmnS~mS~nD~2t2=(B~mS~m)2D~3γs=γmnB~mB~nD~γ

where the conserved variables D~, S~i, τ~, and B~i are a generalized mass-energy density, momentum density, specific internal energy density, and magnetic field, and γ and γmn are the determinant and inverse of the spatial metric γmn.


The documentation for this class was generated from the following file: