SpECTRE  v2025.08.19
YlmTestFunctions::ProductOfPolynomials Class Reference

Product of polynomials regular on the surface of a sphere. More...

#include <YlmTestFunctions.hpp>

Public Member Functions

 ProductOfPolynomials (size_t pow_nx, size_t pow_ny, size_t pow_nz)
 
DataVector operator() (const DataVector &theta, const DataVector &phi) const
 
template<typename Fr >
DataVector operator() (const tnsr::I< DataVector, 2, Fr > &theta_and_phi) const
 
DataVector df_dth (const DataVector &theta, const DataVector &phi) const
 
template<typename Fr >
DataVector df_dth (const tnsr::I< DataVector, 2, Fr > &theta_and_phi) const
 
DataVector df_dph (const DataVector &theta, const DataVector &phi) const
 
template<typename Fr >
DataVector df_dph (const tnsr::I< DataVector, 2, Fr > &theta_and_phi) const
 
double definite_integral () const
 

Detailed Description

Product of polynomials regular on the surface of a sphere.

Details

Computes \( n_x^{k_x} n_y^{k_y} n_z^{k_z} \) where \(n_x = \sin \theta \cos \phi\), \(n_y = \sin \theta \sin \phi\), and \(n_z = \cos \theta\). The function and its first derivatives are exactly representable by spherical harmonics of order \((L,M)\) if \(L > k_x + k_y + k_z\) and \(M > k_x + k_y\).


The documentation for this class was generated from the following file: