|
SpECTRE
v2025.08.19
|
Product of polynomials regular on the surface of a sphere. More...
#include <YlmTestFunctions.hpp>
Public Member Functions | |
| ProductOfPolynomials (size_t pow_nx, size_t pow_ny, size_t pow_nz) | |
| DataVector | operator() (const DataVector &theta, const DataVector &phi) const |
| template<typename Fr > | |
| DataVector | operator() (const tnsr::I< DataVector, 2, Fr > &theta_and_phi) const |
| DataVector | df_dth (const DataVector &theta, const DataVector &phi) const |
| template<typename Fr > | |
| DataVector | df_dth (const tnsr::I< DataVector, 2, Fr > &theta_and_phi) const |
| DataVector | df_dph (const DataVector &theta, const DataVector &phi) const |
| template<typename Fr > | |
| DataVector | df_dph (const tnsr::I< DataVector, 2, Fr > &theta_and_phi) const |
| double | definite_integral () const |
Product of polynomials regular on the surface of a sphere.
Computes \( n_x^{k_x} n_y^{k_y} n_z^{k_z} \) where \(n_x = \sin \theta \cos \phi\), \(n_y = \sin \theta \sin \phi\), and \(n_z = \cos \theta\). The function and its first derivatives are exactly representable by spherical harmonics of order \((L,M)\) if \(L > k_x + k_y + k_z\) and \(M > k_x + k_y\).