Gravitational self-force of a point mass on a circular equatorial orbit in Kerr.
More...
|
|
| CircularOrbit (const CircularOrbit &)=default |
| |
|
CircularOrbit & | operator= (const CircularOrbit &)=default |
| |
|
| CircularOrbit (CircularOrbit &&)=default |
| |
|
CircularOrbit & | operator= (CircularOrbit &&)=default |
| |
|
| CircularOrbit (double black_hole_mass, double black_hole_spin, double orbital_radius, int m_mode_number) |
| |
|
| CircularOrbit (CkMigrateMessage *m) |
| |
|
| WRAPPED_PUPable_decl_template (CircularOrbit) |
| |
|
tnsr::I< double, 2 > | puncture_position () const |
| |
|
double | black_hole_mass () const |
| |
|
double | black_hole_spin () const |
| |
|
double | orbital_radius () const |
| |
|
int | m_mode_number () const |
| |
|
tuples::tagged_tuple_from_typelist< background_tags > | variables (const tnsr::I< DataVector, 2 > &x, background_tags) const |
| |
|
tuples::tagged_tuple_from_typelist< source_tags > | variables (const tnsr::I< DataVector, 2 > &x, source_tags) const |
| |
|
template<typename... RequestedTags> |
| tuples::TaggedTuple< RequestedTags... > | variables (const tnsr::I< DataVector, 2 > &x, const Mesh< 2 > &, const InverseJacobian< DataVector, 2, Frame::ElementLogical, Frame::Inertial > &, tmpl::list< RequestedTags... >) const |
| |
|
void | pup (PUP::er &p) override |
| |
Gravitational self-force of a point mass on a circular equatorial orbit in Kerr.
This class defines the gravitational self-force equations for a circular orbit by setting the coefficients \(\alpha\), \(\beta\), and \(\gamma\) (see GrSelfForce::FirstOrderSystem). It also sets the effective source \(S_m^\mathrm{eff}\) and the singular field \(\Psi_m^P\) in the regularized region. The coefficients are computed using Mathematica-generated functions (see CircularOrbitCoeffs.hpp) and the effective source is computed using the GravitationalEffectiveSource code by Wardell et. al. (https://github.com/barrywardell/GravitationalEffectiveSource) and then transformed to our form of the equations with more Mathematica-generated functions (see CircularOrbitConvertEffsource.hpp). The derivation of these equations will be presented in a future publication. A very strong test of the validity of these equations is evaluating them on the singular field and the corresponding effective source provided by the external GravitationalEffectiveSource code (see Test_CircularOrbit.cpp).