|
SpECTRE
v2025.08.19
|
Computes the spatial covariant derivative of the extrinsic curvature. More...
#include <ExtrinsicCurvature.hpp>
Public Types | |
| using | argument_tags = tmpl::list< ::Tags::deriv< gr::Tags::ExtrinsicCurvature< DataVector, SpatialDim, Frame >, tmpl::size_t< SpatialDim >, Frame >, gr::Tags::ExtrinsicCurvature< DataVector, SpatialDim, Frame >, gr::Tags::SpatialChristoffelSecondKind< DataVector, SpatialDim, Frame > > |
| using | return_type = tnsr::ijj< DataVector, SpatialDim, Frame > |
| using | base = gr::Tags::CovariantDerivativeOfExtrinsicCurvature< DataVector, SpatialDim, Frame > |
Public Types inherited from gr::Tags::CovariantDerivativeOfExtrinsicCurvature< DataVector, SpatialDim, Frame > | |
| using | type = tnsr::ijj< DataVector, Dim, Frame > |
Static Public Attributes | |
| static constexpr auto | function |
Computes the spatial covariant derivative of the extrinsic curvature.
The spatial covariant derivative is computed as
\[ D_k K_{ij} = \partial_k K_{ij} - {^{(3)}\Gamma^{l}_{ki}} K_{lj} - {^{(3)}\Gamma^{l}_{kj}}K_{il} \]
where \( {^{(3)}\Gamma^{k}_{ij}} \) is the spatial Christoffel symbol of the second kind.
|
staticconstexpr |