SpECTRE Documentation Coverage Report
Current view: top level - NumericalAlgorithms/SphericalHarmonics - TensorYlmSphereToCart.hpp Hit Total Coverage
Commit: 1f2210958b4f38fdc0400907ee7c6d5af5111418 Lines: 1 2 50.0 %
Date: 2025-12-05 05:03:31
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include "NumericalAlgorithms/SphericalHarmonics/TensorYlm.hpp"
       7             : 
       8             : #include <cstddef>
       9             : 
      10             : #include "Utilities/Gsl.hpp"
      11             : 
      12             : namespace ylm::TensorYlm {
      13             : 
      14             : /*!
      15             :  * \brief Fills a sparse matrix that does a TensorYlm Cartesian
      16             :  * to Spherical operation.
      17             :  *
      18             :  * Assumes that the input, $T^B_{\ell m}$, is stored in a
      19             :  * Tensor<DataVector>.  Multiplying the resulting
      20             :  * sparse matrix by the Tensor<DataVector> is equivalent to
      21             :  * evaluating the right-hand side of Eq. $(\ref{eq:S2C})$.
      22             :  *
      23             :  * We assume that the independent components of the Tensor<DataVector>
      24             :  * are stored contiguously in memory, in order of the `storage_index` of
      25             :  * the Tensor.  However, we do allow for a stride.  This means that we
      26             :  * can point to memory starting with the first element of
      27             :  * $T^B_{\ell m}$ and multiply that by the sparse matrix we compute
      28             :  * here, and get the result.
      29             :  *
      30             :  * The memory layout here is different than in SpEC.  In SpEC, each
      31             :  * tensor component is stored in separately-allocated memory, so the
      32             :  * SpEC equivalent of the fill_sphere_to_cart function fills $N^2$ sparse
      33             :  * matrices, where $N$ is the number of independent components of the
      34             :  * Tensor. The advantage of the SpEC method is that each sparse matrix
      35             :  * is smaller, so sorting elements into the correct order while
      36             :  * constructing each sparse matrix is faster (sorting is > linear in
      37             :  * the number of matrix elements).  The disadvantage of the SpEC
      38             :  * method is that evaluating the coefficients for a single Tensor involves
      39             :  * $N^2$ matrix-vector multiplications, whereas here evaluating the
      40             :  * coefficients involves only one matrix-vector multiplication, which should
      41             :  * have more efficient memory access.  It is not clear which method is
      42             :  * faster overall without more profiling.
      43             :  *
      44             :  * ## Explicit formulas
      45             :  *
      46             :  * The following formulas come from Klinger and Scheel, in prep.
      47             :  *
      48             :  * For rank-1 tensors, the expression for
      49             :  * $C^{\ell' m' \tilde{A}}_{\ell m B}$ is
      50             :  * \begin{align}
      51             :  * C^{\ell' m' \tilde{A}}_{\ell m B} &=
      52             :  * (-1)^{\delta(s_B,-1)-m}\sqrt{\frac{(2 \ell+1)(2 \ell'  + 1)}{2}}
      53             :  * \sum_j k_j(\tilde{A})
      54             :  *    \left(\begin{array}{ccc}
      55             :  *     \ell & \ell' & 1 \cr
      56             :  *      0 & -s_B & s_B
      57             :  *    \end{array}\right)
      58             :  *    \left(\begin{array}{ccc}
      59             :  *     \ell & \ell' & 1 \cr
      60             :  *      -m & m' & m_j(\tilde{A})
      61             :  *    \end{array}\right),
      62             :  * \end{align}
      63             :  * where the 6-element "matrices"
      64             :  * in parentheses are Wigner 3-J symbols.
      65             :  *
      66             :  * For second-rank tensors, the expression for
      67             :  * $C^{\ell' m' \tilde{A}}_{\ell m B}$ is
      68             :  * \begin{align}
      69             :  *  C^{\ell' m' \tilde{A}}_{\ell m B}
      70             :  *    &=
      71             :  *    \frac{1}{2}(-1)^{\delta(s_{B_1},-1)}(-1)^{\delta(s_{B_2},-1)}(-1)^{m'}
      72             :  *    \sqrt{(2\ell+1)(2\ell'+1)}
      73             :  *    \nonumber \\
      74             :  *    &\times
      75             :  *    \sum_{p,q,\bar{\ell},\bar{m},\bar{s}}
      76             :  *    (2 \bar{\ell}+1) (-1)^{\bar{s}}
      77             :  *    k_p(\tilde{A}_1) k_q(\tilde{A}_2) S(\bar{\ell},B)
      78             :  *    \left(\begin{array}{ccc}
      79             :  *     \ell & \ell' & \bar{\ell} \cr
      80             :  *      0&-s_{B_1}-s_{B_2}&-\bar{s}
      81             :  *    \end{array}\right)
      82             :  *    \nonumber \\
      83             :  *    &\qquad\times
      84             :  *    \left(\begin{array}{ccc}
      85             :  *     \ell & \ell' & \bar{\ell} \cr
      86             :  *      -m & m' & \bar{m}
      87             :  *    \end{array}\right)
      88             :  *    \left(\begin{array}{ccc}
      89             :  *     1 & 1 & \bar{\ell} \cr
      90             :  *      m_p(\tilde{A}_1)&m_q(\tilde{A}_2)&-\bar{m}
      91             :  *    \end{array}\right)
      92             :  *    \left(\begin{array}{ccc}
      93             :  *     1 & 1 & \bar{\ell} \cr
      94             :  *     s_{B_1}&s_{B_2}&\bar{s}
      95             :  *    \end{array}\right),
      96             :  * \end{align}
      97             :  * where the factor $S(\bar{\ell},B)$ is a symmetry factor.
      98             :  * For a 2nd-rank tensor with no symmetries, $S(\bar{\ell},B)$ is
      99             :  * unity, but for a tensor symmetric in $(B_1,B_2)$
     100             :  * the matrix elements $C^{\ell' m' \tilde{A}}_{\ell m B}$
     101             :  * are multiplied only by tensor components with $B_1\geq B_2$
     102             :  * and the symmetry is accounted for by setting
     103             :  * \begin{align}
     104             :  *   S(\bar{\ell},B) &=
     105             :  *   (1+(-1)^{\bar{\ell}})\frac{2-\delta(B_1,B_2)}{2}.
     106             :  * \end{align}
     107             :  *
     108             :  * For third-rank tensors, the expression for
     109             :  * $C^{\ell' m' \tilde{A}}_{\ell m B}$ is
     110             :  * \begin{align}
     111             :  *  C^{\ell' m' \tilde{A}}_{\ell m B}
     112             :  *    &=
     113             :  *       (-1)^{m'}
     114             :  *       (-1)^{\delta(s_{B_1},-1)}
     115             :  *       (-1)^{\delta(s_{B_2},-1)}
     116             :  *       (-1)^{\delta(s_{B_3},-1)}
     117             :  *    \sqrt{\frac{(2\ell+1)(2\ell'+1)}{8}}
     118             :  *    \nonumber \\
     119             :  *    &\times
     120             :  *     \sum_{p,q,r,\bar{\ell},\bar{m},\bar{s},\check{\ell},\check{m},\check{s}}
     121             :  *    (2 \bar{\ell}+1) (2 \check{\ell}+1) (-1)^{\bar{s}+\check{s}-\bar{m}}
     122             :  *    k_p(\tilde{A}_2) k_q(\tilde{A}_3) k_r(\tilde{A}_1) S(\bar{\ell},B)
     123             :  *    \nonumber \\
     124             :  *    &\qquad\times
     125             :  *    \left(\begin{array}{ccc}
     126             :  *     \ell & \ell' & \check{\ell} \cr
     127             :  *      -m & m' & \check{m}
     128             :  *    \end{array}\right)
     129             :  *    \left(\begin{array}{ccc}
     130             :  *     \ell & \ell' & \check{\ell} \cr
     131             :  *      0&-s_{B_1}-s_{B_2}-s_{B_3}&-\check{s}
     132             :  *    \end{array}\right)
     133             :  *    \nonumber \\
     134             :  *    &\qquad\times
     135             :  *    \left(\begin{array}{ccc}
     136             :  *     1 & 1 & \bar{\ell} \cr
     137             :  *     m_p(\tilde{A}_2)&m_q(\tilde{A}_3)&-\bar{m}
     138             :  *    \end{array}\right)
     139             :  *    \left(\begin{array}{ccc}
     140             :  *     1 & 1 & \bar{\ell} \cr
     141             :  *     s_{B_2}&s_{B_3}&\bar{s}
     142             :  *    \end{array}\right)
     143             :  *    \nonumber \\
     144             :  *    &\qquad\times
     145             :  *    \left(\begin{array}{ccc}
     146             :  *     1 & \bar{\ell} & \check{\ell} \cr
     147             :  *     m_r(\tilde{A}_1)&\bar{m}&-\check{m}
     148             :  *    \end{array}\right)
     149             :  *    \left(\begin{array}{ccc}
     150             :  *     1 & \bar{\ell} & \check{\ell} \cr
     151             :  *     s_{B_1}&-\bar{s}&\check{s}
     152             :  *    \end{array}\right),
     153             :  * \end{align}
     154             :  * As in the rank-2 case,
     155             :  * $S(\bar{\ell},B)$ is a symmetry factor that is unity
     156             :  * for a tensor with no symmetries and is
     157             :  * \begin{align}
     158             :  *   S(\bar{\ell},B) &=
     159             :  *   (1+(-1)^{\bar{\ell}})\frac{2-\delta(B_2,B_3)}{2}.
     160             :  * \end{align}
     161             :  * for a tensor symmetric on its last two indices. We don't consider
     162             :  * other symmetries because we don't find them in the cases we care
     163             :  * about.
     164             :  *
     165             :  * \tparam TensorStructure A Tensor_detail::Structure
     166             :  * \tparam SparseMatrixType A sparse matrix fillable by SparseMatrixFiller
     167             :  *
     168             :  * \param matrix The sparse matrix to fill
     169             :  * \param ell_max The maximum ylm ell value
     170             :  *
     171             :  */
     172             : template <typename TensorStructure, typename SparseMatrixType>
     173           1 : void fill_sphere_to_cart(gsl::not_null<SparseMatrixType*> matrix,
     174             :                          size_t ell_max);
     175             : 
     176             : }  // namespace ylm::TensorYlm

Generated by: LCOV version 1.14