SpECTRE Documentation Coverage Report
Current view: top level - PointwiseFunctions/Hydro/EquationsOfState - Barotropic3D.hpp Hit Total Coverage
Commit: 8f6d7ed2ad592dd78354983fd8e5ec2be7abb468 Lines: 14 37 37.8 %
Date: 2024-05-02 15:57:06
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <boost/preprocessor/arithmetic/dec.hpp>
       7             : #include <boost/preprocessor/arithmetic/inc.hpp>
       8             : #include <boost/preprocessor/control/expr_iif.hpp>
       9             : #include <boost/preprocessor/list/adt.hpp>
      10             : #include <boost/preprocessor/repetition/for.hpp>
      11             : #include <boost/preprocessor/repetition/repeat.hpp>
      12             : #include <boost/preprocessor/tuple/to_list.hpp>
      13             : #include <cstddef>
      14             : #include <limits>
      15             : #include <memory>
      16             : #include <pup.h>
      17             : 
      18             : #include "DataStructures/Tensor/TypeAliases.hpp"
      19             : #include "Options/String.hpp"
      20             : #include "PointwiseFunctions/Hydro/EquationsOfState/EquationOfState.hpp"
      21             : #include "PointwiseFunctions/Hydro/Units.hpp"
      22             : #include "Utilities/Serialization/CharmPupable.hpp"
      23             : #include "Utilities/TMPL.hpp"
      24             : 
      25             : namespace EquationsOfState {
      26             : /*!
      27             :  * \ingroup EquationsOfStateGroup
      28             :  * \brief A 3D equation of state representing a barotropic fluid.
      29             :  *
      30             :  *
      31             :  * The equation of state takes the form
      32             :  *
      33             :  * \f[
      34             :  * p = p (\rho , T, Y_e) = p(\rho, 0, Y_e= Y_{e, \beta})
      35             :  * \f]
      36             :  *
      37             :  * where \f$\rho\f$ is the rest mass density, \f$T\f$  the
      38             :  * temperature , and \f$Y_e\f$ the electron fraction. The temperature and
      39             :  * electron fraction are not used, so evaluating this EoS at any arbtirary
      40             :  * temeperature or electron fraction is equivalent to evaluating it at
      41             :  * zero temperature and in beta equalibrium.
      42             :  */
      43             : template <typename ColdEquilEos>
      44           1 : class Barotropic3D : public EquationOfState<ColdEquilEos::is_relativistic, 3> {
      45             :  public:
      46           0 :   static constexpr size_t thermodynamic_dim = 3;
      47           0 :   static constexpr bool is_relativistic = ColdEquilEos::is_relativistic;
      48             : 
      49           0 :   static std::string name() {
      50             :     return "Barotropic3D(" + pretty_type::name<ColdEquilEos>() + ")";
      51             :   }
      52           0 :   static constexpr Options::String help = {
      53             :       "An 3D EoS which is independent of electron fraction and temperature. "
      54             :       "Contains an underlying 1D EoS which is dependent only "
      55             :       "on rest mass density."};
      56           0 :   struct UnderlyingEos {
      57           0 :     using type = ColdEquilEos;
      58           0 :     static std::string name() {
      59             :       return pretty_type::short_name<ColdEquilEos>();
      60             :     }
      61           0 :     static constexpr Options::String help{
      62             :         "The underlying Eos which is being represented as a "
      63             :         "3D Eos.  Must be a 1D EoS"};
      64             :   };
      65             : 
      66           0 :   using options = tmpl::list<UnderlyingEos>;
      67             : 
      68           0 :   Barotropic3D() = default;
      69           0 :   Barotropic3D(const Barotropic3D&) = default;
      70           0 :   Barotropic3D& operator=(const Barotropic3D&) = default;
      71           0 :   Barotropic3D(Barotropic3D&&) = default;
      72           0 :   Barotropic3D& operator=(Barotropic3D&&) = default;
      73           0 :   ~Barotropic3D() override = default;
      74             : 
      75           0 :   explicit Barotropic3D(const ColdEquilEos& underlying_eos)
      76             :       : underlying_eos_(underlying_eos){};
      77             : 
      78             :   EQUATION_OF_STATE_FORWARD_DECLARE_MEMBERS(Barotropic3D, 3)
      79             : 
      80           0 :   std::unique_ptr<EquationOfState<ColdEquilEos::is_relativistic, 3>> get_clone()
      81             :       const override;
      82             : 
      83           0 :   bool is_equal(const EquationOfState<ColdEquilEos::is_relativistic, 3>& rhs)
      84             :       const override;
      85             : 
      86             :   /// \brief Returns `true` if the EOS is barotropic
      87           1 :   bool is_barotropic() const override { return true; }
      88             : 
      89           0 :   bool operator==(const Barotropic3D<ColdEquilEos>& rhs) const;
      90             : 
      91           0 :   bool operator!=(const Barotropic3D<ColdEquilEos>& rhs) const;
      92             :   /// @{
      93             :   /*!
      94             :    * Computes the electron fraction in beta-equilibrium \f$Y_e^{\rm eq}\f$ from
      95             :    * the rest mass density \f$\rho\f$ and the temperature \f$T\f$.
      96             :    */
      97           1 :   Scalar<double> equilibrium_electron_fraction_from_density_temperature(
      98             :       const Scalar<double>& rest_mass_density,
      99             :       const Scalar<double>& temperature) const {
     100             :     return underlying_eos_
     101             :         .equilibrium_electron_fraction_from_density_temperature(
     102             :             rest_mass_density, temperature);
     103             :   }
     104             : 
     105           1 :   Scalar<DataVector> equilibrium_electron_fraction_from_density_temperature(
     106             :       const Scalar<DataVector>& rest_mass_density,
     107             :       const Scalar<DataVector>& temperature) const {
     108             :     return underlying_eos_
     109             :         .equilibrium_electron_fraction_from_density_temperature(
     110             :             rest_mass_density, temperature);
     111             :   }
     112             :   /// @}
     113             :   //
     114             : 
     115           0 :   WRAPPED_PUPable_decl_base_template(  // NOLINT
     116             :       SINGLE_ARG(EquationOfState<ColdEquilEos::is_relativistic, 3>),
     117             :       Barotropic3D);
     118             : 
     119             :   /// The lower bound of the electron fraction that is valid for this EOS
     120           1 :   double electron_fraction_lower_bound() const override { return 0.0; }
     121             : 
     122             :   /// The upper bound of the electron fraction that is valid for this EOS
     123           1 :   double electron_fraction_upper_bound() const override { return 1.0; }
     124             : 
     125             :   /// The lower bound of the rest mass density that is valid for this EOS
     126           1 :   double rest_mass_density_lower_bound() const override {
     127             :     return underlying_eos_.rest_mass_density_lower_bound();
     128             :   }
     129             : 
     130             :   /// The upper bound of the rest mass density that is valid for this EOS
     131           1 :   double rest_mass_density_upper_bound() const override {
     132             :     return underlying_eos_.rest_mass_density_upper_bound();
     133             :   }
     134             : 
     135             :   /// The lower bound of the temperature that is valid for this EOS
     136           1 :   double temperature_lower_bound() const override { return 0.0; }
     137             : 
     138             :   /// The upper bound of the temperature that is valid for this EOS
     139           1 :   double temperature_upper_bound() const override {
     140             :     return std::numeric_limits<double>::max();
     141             :   }
     142             : 
     143             :   /// The lower bound of the specific internal energy that is valid for this EOS
     144             :   /// at the given rest mass density \f$\rho\f$ and electron fraction \f$Y_e\f$
     145           1 :   double specific_internal_energy_lower_bound(
     146             :       const double rest_mass_density,
     147             :       const double /*electron_fraction*/) const override {
     148             :     return underlying_eos_.specific_internal_energy_lower_bound(
     149             :         rest_mass_density);
     150             :   }
     151             : 
     152             :   /// The upper bound of the specific internal energy that is valid for this EOS
     153             :   /// at the given rest mass density \f$\rho\f$
     154           1 :   double specific_internal_energy_upper_bound(
     155             :       const double rest_mass_density,
     156             :       const double /*electron_fraction*/) const override {
     157             :     return underlying_eos_.specific_internal_energy_upper_bound(
     158             :         rest_mass_density);
     159             :   }
     160             : 
     161             :   /// The lower bound of the specific enthalpy that is valid for this EOS
     162           1 :   double specific_enthalpy_lower_bound() const override {
     163             :     return underlying_eos_.specific_enthalpy_lower_bound();
     164             :   }
     165             : 
     166             :   /// The baryon mass for this EoS
     167           1 :   double baryon_mass() const override { return underlying_eos_.baryon_mass(); }
     168             : 
     169             :  private:
     170             :   EQUATION_OF_STATE_FORWARD_DECLARE_MEMBER_IMPLS(3)
     171           0 :   ColdEquilEos underlying_eos_;
     172             : };
     173             : /// \cond
     174             : template <typename ColdEquilEos>
     175             : PUP::able::PUP_ID EquationsOfState::Barotropic3D<ColdEquilEos>::my_PUP_ID = 0;
     176             : /// \endcond
     177             : }  // namespace EquationsOfState

Generated by: LCOV version 1.14