SpECTRE Documentation Coverage Report
Current view: top level - PointwiseFunctions/GeneralRelativity/GeneralizedHarmonic - CovariantDerivOfExtrinsicCurvature.hpp Hit Total Coverage
Commit: a6a8ee404306bec9d92da8ab89f636b037aefc25 Lines: 1 3 33.3 %
Date: 2024-07-26 22:35:59
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <cstddef>
       7             : 
       8             : #include "DataStructures/DataBox/Tag.hpp"
       9             : #include "DataStructures/Tensor/Tensor.hpp"
      10             : #include "Evolution/Systems/GeneralizedHarmonic/Tags.hpp"
      11             : #include "PointwiseFunctions/GeneralRelativity/Tags.hpp"
      12             : #include "Utilities/Gsl.hpp"
      13             : #include "Utilities/TMPL.hpp"
      14             : 
      15             : /// \cond
      16             : namespace gsl {
      17             : template <typename>
      18             : struct not_null;
      19             : }  // namespace gsl
      20             : class DataVector;
      21             : /// \endcond
      22             : 
      23             : namespace gh {
      24             : /*!
      25             :  * \ingroup GeneralRelativityGroup
      26             :  * \brief Computes the covariant derivative of extrinsic curvature from
      27             :  * generalized harmonic variables and the spacetime normal vector.
      28             :  *
      29             :  * \details If \f$ \Pi_{ab} \f$ and \f$ \Phi_{iab} \f$ are the generalized
      30             :  * harmonic conjugate momentum and spatial derivative variables, and if
      31             :  * \f$n^a\f$ is the spacetime normal vector, then the extrinsic curvature
      32             :  * can be written as
      33             :  * \f{equation}\label{eq:kij}
      34             :  *     K_{ij} = \frac{1}{2} \Pi_{ij} + \Phi_{(ij)a} n^a,
      35             :  * \f}
      36             :  * and its covariant derivative as
      37             :  * \f{equation}\label{eq:covkij}
      38             :  * \nabla_k K_{ij} = \partial_k K_{ij} - \Gamma^l{}_{ik} K_{lj}
      39             :  *                                     - \Gamma^l{}_{jk} K_{li},
      40             :  * \f}
      41             :  * where \f$\Gamma^k{}_{ij}\f$ are Christoffel symbols of the second kind.
      42             :  * The partial derivatives of extrinsic curvature can be computed as
      43             :  * \f{equation}\label{eq:pdkij}
      44             :  * \partial_k K_{ij} =
      45             :  *     \frac{1}{2}\left(\partial_k \Pi_{ij} +
      46             :  *                      \left(\partial_k \Phi_{ija} +
      47             :  *                            \partial_k \Phi_{jia}\right) n^a +
      48             :  *                      \left(\Phi_{ija} + \Phi_{jia}\right) \partial_k n^a
      49             :  *               \right),
      50             :  * \f}
      51             :  * where we have access to all terms except the spatial derivatives of the
      52             :  * spacetime unit normal vector \f$\partial_k n^a\f$. Given that
      53             :  * \f$n^a=(1/\alpha, -\beta^i /\alpha)\f$, the temporal portion of
      54             :  * \f$\partial_k n^a\f$ can be computed as:
      55             :  * \f{align}
      56             :  * \partial_k n^0 =& -\frac{1}{\alpha^2} \partial_k \alpha, \nonumber \\
      57             :  *                =& -\frac{1}{\alpha^2} (-\alpha/2) n^a \Phi_{kab} n^b,
      58             :  *                   \nonumber \\
      59             :  *                =& \frac{1}{2\alpha} n^a \Phi_{kab} n^b, \nonumber \\
      60             :  *                =& \frac{1}{2} n^0 n^a \Phi_{kab} n^b, \nonumber \\
      61             :  *                =& -\left(g^{0a} +
      62             :  *                          \frac{1}{2}n^0 n^a\right) \Phi_{kab} n^b,
      63             :  * \f}
      64             :  * where we use the expression for \f$\partial_k \alpha\f$ from
      65             :  * \ref spatial_deriv_of_lapse; while the spatial portion of the same can be
      66             :  * computed as:
      67             :  * \f{align}
      68             :  * \partial_k n^i =& -\partial_k (\beta^i/\alpha)
      69             :  *                 = -\frac{1}{\alpha}\partial_k \beta^i
      70             :  *                   + \frac{\beta^i}{\alpha^2}\partial_k \alpha ,\nonumber \\
      71             :  *                =& -\frac{1}{2}\frac{\beta^i}{\alpha} n^a\Phi_{kab}n^b
      72             :  *                   -\left(g^{ia}
      73             :  *                          + n^i n^a\right) \Phi_{kab} n^b, \nonumber\\
      74             :  *                =& -\left(g^{ia} + \frac{1}{2}n^i n^a\right) \Phi_{kab}n^b,
      75             :  * \f}
      76             :  * where we use the expression for \f$\partial_k \beta^i\f$ from
      77             :  * \ref spatial_deriv_of_shift. Combining the last two equations, we find that
      78             :  * \f{equation}
      79             :  * \partial_k n^a = -\left(g^{ab} + \frac{1}{2}n^a n^b\right)\Phi_{kbc}n^c,
      80             :  * \f}
      81             :  * and using Eq.(\f$\ref{eq:covkij}\f$) and Eq.(\f$\ref{eq:pdkij}\f$) with this,
      82             :  * we can compute the covariant derivative of the extrinsic curvature as:
      83             :  * \f{equation}
      84             :  * \nabla_k K_{ij} =
      85             :  *     \frac{1}{2}\left(\partial_k \Pi_{ij} +
      86             :  *                      \left(\partial_k \Phi_{ija} +
      87             :  *                            \partial_k \Phi_{jia}\right) n^a -
      88             :  *                      \left(\Phi_{ija} + \Phi_{jia}\right)
      89             :  *                      \left(g^{ab} + \frac{1}{2}n^a n^b\right)
      90             :  *                      \Phi_{kbc}n^c
      91             :  *                \right) - \Gamma^l{}_{ik} K_{lj} - \Gamma^l{}_{jk} K_{li} \f}.
      92             :  */
      93             : template <typename DataType, size_t SpatialDim, typename Frame>
      94           1 : tnsr::ijj<DataType, SpatialDim, Frame> covariant_deriv_of_extrinsic_curvature(
      95             :     const tnsr::ii<DataType, SpatialDim, Frame>& extrinsic_curvature,
      96             :     const tnsr::A<DataType, SpatialDim, Frame>& spacetime_unit_normal_vector,
      97             :     const tnsr::Ijj<DataType, SpatialDim, Frame>&
      98             :         spatial_christoffel_second_kind,
      99             :     const tnsr::AA<DataType, SpatialDim, Frame>& inverse_spacetime_metric,
     100             :     const tnsr::iaa<DataType, SpatialDim, Frame>& phi,
     101             :     const tnsr::iaa<DataType, SpatialDim, Frame>& d_pi,
     102             :     const tnsr::ijaa<DataType, SpatialDim, Frame>& d_phi);
     103             : 
     104             : template <typename DataType, size_t SpatialDim, typename Frame>
     105           0 : void covariant_deriv_of_extrinsic_curvature(
     106             :     gsl::not_null<tnsr::ijj<DataType, SpatialDim, Frame>*>
     107             :         d_extrinsic_curvature,
     108             :     const tnsr::ii<DataType, SpatialDim, Frame>& extrinsic_curvature,
     109             :     const tnsr::A<DataType, SpatialDim, Frame>& spacetime_unit_normal_vector,
     110             :     const tnsr::Ijj<DataType, SpatialDim, Frame>&
     111             :         spatial_christoffel_second_kind,
     112             :     const tnsr::AA<DataType, SpatialDim, Frame>& inverse_spacetime_metric,
     113             :     const tnsr::iaa<DataType, SpatialDim, Frame>& phi,
     114             :     const tnsr::iaa<DataType, SpatialDim, Frame>& d_pi,
     115             :     const tnsr::ijaa<DataType, SpatialDim, Frame>& d_phi);
     116             : }  // namespace gh

Generated by: LCOV version 1.14