SpECTRE Documentation Coverage Report
Current view: top level - PointwiseFunctions/AnalyticData/GrMhd - MagneticRotor.hpp Hit Total Coverage
Commit: 1f2210958b4f38fdc0400907ee7c6d5af5111418 Lines: 20 64 31.2 %
Date: 2025-12-05 05:03:31
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <array>
       7             : #include <limits>
       8             : 
       9             : #include "DataStructures/Tensor/TypeAliases.hpp"
      10             : #include "Options/Context.hpp"
      11             : #include "Options/String.hpp"
      12             : #include "PointwiseFunctions/AnalyticData/AnalyticData.hpp"
      13             : #include "PointwiseFunctions/AnalyticData/GrMhd/AnalyticData.hpp"
      14             : #include "PointwiseFunctions/AnalyticSolutions/GeneralRelativity/Minkowski.hpp"
      15             : #include "PointwiseFunctions/Hydro/EquationsOfState/IdealFluid.hpp"
      16             : #include "PointwiseFunctions/Hydro/TagsDeclarations.hpp"
      17             : #include "PointwiseFunctions/InitialDataUtilities/InitialData.hpp"
      18             : #include "Utilities/Serialization/CharmPupable.hpp"
      19             : #include "Utilities/TMPL.hpp"
      20             : #include "Utilities/TaggedTuple.hpp"
      21             : 
      22             : /// \cond
      23             : namespace PUP {
      24             : class er;
      25             : }  // namespace PUP
      26             : /// \endcond
      27             : 
      28             : namespace grmhd::AnalyticData {
      29             : 
      30             : /*!
      31             :  * \brief Analytic initial data for a magnetic rotor.
      32             :  *
      33             :  * This is a test first described in \cite Balsara1999 for classical MHD and
      34             :  * later generalised to relativistic MHD in \cite DelZanna2002rv
      35             :  *
      36             :  * This effectively 2D test initially consists of an infinitely long cylinder of
      37             :  * radius `RotorRadius` rotating about the z-axis with the given
      38             :  * `AngularVelocity`. The rest mass density of the fluid inside the rotor,
      39             :  * `RotorDensity`, is higher than the `BackgroundDensity` outside of the rotor.
      40             :  * The fluid is at a constant `Pressure`.  The rotor is embedded in a constant
      41             :  * `MagneticField` (usually taken to be along the x-axis).  The fluid is an
      42             :  * ideal fluid with the given `AdiabaticIndex`.  Evolving the initial data,
      43             :  * magnetic braking will slow down the rotor, while dragging the magnetic field
      44             :  * lines.
      45             :  *
      46             :  * The standard test setup is done on a unit cube \f$[-0.5,0.5]^3\f$ with the
      47             :  * following values given for the options:
      48             :  * -  RotorRadius: 0.1
      49             :  * -  RotorDensity: 10.0
      50             :  * -  BackgroundDensity: 1.0
      51             :  * -  Pressure: 1.0
      52             :  * -  AngularVelocity: 9.95
      53             :  * -  MagneticField: [1.0, 0.0, 0.0]
      54             :  * -  AdiabaticIndex: 1.66666666666666667
      55             :  *
      56             :  * Note that \cite Zanotti2016efficient uses different parameters,
      57             :  * -  RotorRadius: 0.1
      58             :  * -  RotorDensity: 10.0
      59             :  * -  BackgroundDensity: 1.0
      60             :  * -  Pressure: 1.0
      61             :  * -  AngularVelocity: 9.3
      62             :  * -  MagneticField: [1.0, 0.0, 0.0]
      63             :  * -  AdiabaticIndex: 1.333333333333333
      64             :  *
      65             :  * The magnetic field in the disk should rotate by about 90 degrees by t = 0.4.
      66             :  */
      67           1 : class MagneticRotor : public evolution::initial_data::InitialData,
      68             :                       public MarkAsAnalyticData,
      69             :                       public AnalyticDataBase,
      70             :                       public hydro::TemperatureInitialization<MagneticRotor> {
      71             :  public:
      72           0 :   using equation_of_state_type = EquationsOfState::IdealFluid<true>;
      73             : 
      74             :   /// Radius of the rotor.
      75           1 :   struct RotorRadius {
      76           0 :     using type = double;
      77           0 :     static constexpr Options::String help = {
      78             :         "The initial radius of the rotor."};
      79           0 :     static type lower_bound() { return 0.0; }
      80             :   };
      81             :   /// Density inside the rotor.
      82           1 :   struct RotorDensity {
      83           0 :     using type = double;
      84           0 :     static constexpr Options::String help = {"Density inside RotorRadius."};
      85           0 :     static type lower_bound() { return 0.0; }
      86             :   };
      87             :   /// Density outside the rotor.
      88           1 :   struct BackgroundDensity {
      89           0 :     using type = double;
      90           0 :     static constexpr Options::String help = {"Density outside RotorRadius."};
      91           0 :     static type lower_bound() { return 0.0; }
      92             :   };
      93             :   /// Uniform pressure inside and outside the rotor.
      94           1 :   struct Pressure {
      95           0 :     using type = double;
      96           0 :     static constexpr Options::String help = {"Pressure."};
      97           0 :     static type lower_bound() { return 0.0; }
      98             :   };
      99             :   /// Angular velocity inside the rotor.
     100           1 :   struct AngularVelocity {
     101           0 :     using type = double;
     102           0 :     static constexpr Options::String help = {
     103             :         "Angular velocity of matter inside RotorRadius"};
     104             :   };
     105             :   /// The x,y,z components of the uniform magnetic field threading the matter.
     106           1 :   struct MagneticField {
     107           0 :     using type = std::array<double, 3>;
     108           0 :     static constexpr Options::String help = {
     109             :         "The x,y,z components of the uniform magnetic field."};
     110             :   };
     111             :   /// The adiabatic index of the ideal fluid.
     112           1 :   struct AdiabaticIndex {
     113           0 :     using type = double;
     114           0 :     static constexpr Options::String help = {
     115             :         "The adiabatic index of the ideal fluid."};
     116           0 :     static type lower_bound() { return 1.0; }
     117             :   };
     118             : 
     119           0 :   using options =
     120             :       tmpl::list<RotorRadius, RotorDensity, BackgroundDensity, Pressure,
     121             :                  AngularVelocity, MagneticField, AdiabaticIndex>;
     122             : 
     123           0 :   static constexpr Options::String help = {
     124             :       "Magnetic rotor analytic initial data."};
     125             : 
     126           0 :   MagneticRotor() = default;
     127           0 :   MagneticRotor(const MagneticRotor& /*rhs*/) = default;
     128           0 :   MagneticRotor& operator=(const MagneticRotor& /*rhs*/) = default;
     129           0 :   MagneticRotor(MagneticRotor&& /*rhs*/) = default;
     130           0 :   MagneticRotor& operator=(MagneticRotor&& /*rhs*/) = default;
     131           0 :   ~MagneticRotor() override = default;
     132             : 
     133           0 :   MagneticRotor(double rotor_radius, double rotor_density,
     134             :                 double background_density, double pressure,
     135             :                 double angular_velocity,
     136             :                 const std::array<double, 3>& magnetic_field,
     137             :                 double adiabatic_index, const Options::Context& context = {});
     138             : 
     139           0 :   auto get_clone() const
     140             :       -> std::unique_ptr<evolution::initial_data::InitialData> override;
     141             : 
     142             :   /// \cond
     143             :   explicit MagneticRotor(CkMigrateMessage* msg);
     144             :   using PUP::able::register_constructor;
     145             :   WRAPPED_PUPable_decl_template(MagneticRotor);
     146             :   /// \endcond
     147             : 
     148             :   /// @{
     149             :   /// Retrieve the GRMHD variables at a given position.
     150             :   template <typename DataType>
     151           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     152             :                  tmpl::list<hydro::Tags::RestMassDensity<DataType>> /*meta*/)
     153             :       const -> tuples::TaggedTuple<hydro::Tags::RestMassDensity<DataType>>;
     154             : 
     155             :   template <typename DataType>
     156           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     157             :                  tmpl::list<hydro::Tags::ElectronFraction<DataType>> /*meta*/)
     158             :       const -> tuples::TaggedTuple<hydro::Tags::ElectronFraction<DataType>>;
     159             : 
     160             :   template <typename DataType>
     161           1 :   auto variables(
     162             :       const tnsr::I<DataType, 3>& x,
     163             :       tmpl::list<hydro::Tags::SpecificInternalEnergy<DataType>> /*meta*/) const
     164             :       -> tuples::TaggedTuple<hydro::Tags::SpecificInternalEnergy<DataType>>;
     165             : 
     166             :   template <typename DataType>
     167           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     168             :                  tmpl::list<hydro::Tags::Pressure<DataType>> /*meta*/) const
     169             :       -> tuples::TaggedTuple<hydro::Tags::Pressure<DataType>>;
     170             : 
     171             :   template <typename DataType>
     172           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     173             :                  tmpl::list<hydro::Tags::SpatialVelocity<DataType, 3>> /*meta*/)
     174             :       const -> tuples::TaggedTuple<hydro::Tags::SpatialVelocity<DataType, 3>>;
     175             : 
     176             :   template <typename DataType>
     177           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     178             :                  tmpl::list<hydro::Tags::MagneticField<DataType, 3>> /*meta*/)
     179             :       const -> tuples::TaggedTuple<hydro::Tags::MagneticField<DataType, 3>>;
     180             : 
     181             :   template <typename DataType>
     182           1 :   auto variables(
     183             :       const tnsr::I<DataType, 3>& x,
     184             :       tmpl::list<hydro::Tags::DivergenceCleaningField<DataType>> /*meta*/) const
     185             :       -> tuples::TaggedTuple<hydro::Tags::DivergenceCleaningField<DataType>>;
     186             : 
     187             :   template <typename DataType>
     188           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     189             :                  tmpl::list<hydro::Tags::LorentzFactor<DataType>> /*meta*/)
     190             :       const -> tuples::TaggedTuple<hydro::Tags::LorentzFactor<DataType>>;
     191             : 
     192             :   template <typename DataType>
     193           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     194             :                  tmpl::list<hydro::Tags::SpecificEnthalpy<DataType>> /*meta*/)
     195             :       const -> tuples::TaggedTuple<hydro::Tags::SpecificEnthalpy<DataType>>;
     196             : 
     197             :   template <typename DataType>
     198           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     199             :                  tmpl::list<hydro::Tags::Temperature<DataType>> /*meta*/) const
     200             :       -> tuples::TaggedTuple<hydro::Tags::Temperature<DataType>> {
     201             :     return TemperatureInitialization::variables(
     202             :         x, tmpl::list<hydro::Tags::Temperature<DataType>>{});
     203             :   }
     204             :   /// @}
     205             : 
     206             :   /// Retrieve a collection of hydrodynamic variables at position x
     207             :   template <typename DataType, typename Tag1, typename Tag2, typename... Tags>
     208           1 :   tuples::TaggedTuple<Tag1, Tag2, Tags...> variables(
     209             :       const tnsr::I<DataType, 3>& x,
     210             :       tmpl::list<Tag1, Tag2, Tags...> /*meta*/) const {
     211             :     return {tuples::get<Tag1>(variables(x, tmpl::list<Tag1>{})),
     212             :             tuples::get<Tag2>(variables(x, tmpl::list<Tag2>{})),
     213             :             tuples::get<Tags>(variables(x, tmpl::list<Tags>{}))...};
     214             :   }
     215             : 
     216             :   /// Retrieve the metric variables
     217             :   template <typename DataType, typename Tag,
     218             :             Requires<tmpl::list_contains_v<
     219             :                 gr::analytic_solution_tags<3, DataType>, Tag>> = nullptr>
     220           1 :   tuples::TaggedTuple<Tag> variables(const tnsr::I<DataType, 3>& x,
     221             :                                      tmpl::list<Tag> /*meta*/) const {
     222             :     constexpr double dummy_time = 0.0;
     223             :     return background_spacetime_.variables(x, dummy_time, tmpl::list<Tag>{});
     224             :   }
     225             : 
     226           0 :   const EquationsOfState::IdealFluid<true>& equation_of_state() const {
     227             :     return equation_of_state_;
     228             :   }
     229             : 
     230             :   // NOLINTNEXTLINE(google-runtime-references)
     231           0 :   void pup(PUP::er& /*p*/) override;
     232             : 
     233             :  private:
     234           0 :   double rotor_radius_ = std::numeric_limits<double>::signaling_NaN();
     235           0 :   double rotor_density_ = std::numeric_limits<double>::signaling_NaN();
     236           0 :   double background_density_ = std::numeric_limits<double>::signaling_NaN();
     237           0 :   double pressure_ = std::numeric_limits<double>::signaling_NaN();
     238           0 :   double angular_velocity_ = std::numeric_limits<double>::signaling_NaN();
     239           0 :   std::array<double, 3> magnetic_field_{
     240             :       {std::numeric_limits<double>::signaling_NaN(),
     241             :        std::numeric_limits<double>::signaling_NaN(),
     242             :        std::numeric_limits<double>::signaling_NaN()}};
     243           0 :   double adiabatic_index_ = std::numeric_limits<double>::signaling_NaN();
     244           0 :   EquationsOfState::IdealFluid<true> equation_of_state_{};
     245           0 :   gr::Solutions::Minkowski<3> background_spacetime_{};
     246             : 
     247           0 :   friend bool operator==(const MagneticRotor& lhs, const MagneticRotor& rhs);
     248             : 
     249           0 :   friend bool operator!=(const MagneticRotor& lhs, const MagneticRotor& rhs);
     250             : };
     251             : 
     252             : }  // namespace grmhd::AnalyticData

Generated by: LCOV version 1.14