SpECTRE Documentation Coverage Report
Current view: top level - PointwiseFunctions/AnalyticData/GrMhd - MagneticRotor.hpp Hit Total Coverage
Commit: 3c072f0ce967e2e56649d3fa12aa2a0e4fe2a42e Lines: 20 64 31.2 %
Date: 2024-04-23 20:50:18
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <array>
       7             : #include <limits>
       8             : 
       9             : #include "DataStructures/Tensor/TypeAliases.hpp"
      10             : #include "Options/Context.hpp"
      11             : #include "Options/String.hpp"
      12             : #include "PointwiseFunctions/AnalyticData/AnalyticData.hpp"
      13             : #include "PointwiseFunctions/AnalyticData/GrMhd/AnalyticData.hpp"
      14             : #include "PointwiseFunctions/AnalyticSolutions/GeneralRelativity/Minkowski.hpp"
      15             : #include "PointwiseFunctions/Hydro/EquationsOfState/IdealFluid.hpp"  // IWYU pragma: keep
      16             : #include "PointwiseFunctions/Hydro/TagsDeclarations.hpp"
      17             : #include "PointwiseFunctions/InitialDataUtilities/InitialData.hpp"
      18             : #include "Utilities/Serialization/CharmPupable.hpp"
      19             : #include "Utilities/TMPL.hpp"
      20             : #include "Utilities/TaggedTuple.hpp"
      21             : 
      22             : // IWYU pragma:  no_include <pup.h>
      23             : 
      24             : /// \cond
      25             : namespace PUP {
      26             : class er;  // IWYU pragma: keep
      27             : }  // namespace PUP
      28             : /// \endcond
      29             : 
      30             : namespace grmhd::AnalyticData {
      31             : 
      32             : /*!
      33             :  * \brief Analytic initial data for a magnetic rotor.
      34             :  *
      35             :  * This is a test first described in \cite Balsara1999 for classical MHD and
      36             :  * later generalised to relativistic MHD in \cite DelZanna2002rv
      37             :  *
      38             :  * This effectively 2D test initially consists of an infinitely long cylinder of
      39             :  * radius `RotorRadius` rotating about the z-axis with the given
      40             :  * `AngularVelocity`. The rest mass density of the fluid inside the rotor,
      41             :  * `RotorDensity`, is higher than the `BackgroundDensity` outside of the rotor.
      42             :  * The fluid is at a constant `Pressure`.  The rotor is embedded in a constant
      43             :  * `MagneticField` (usually taken to be along the x-axis).  The fluid is an
      44             :  * ideal fluid with the given `AdiabaticIndex`.  Evolving the initial data,
      45             :  * magnetic braking will slow down the rotor, while dragging the magnetic field
      46             :  * lines.
      47             :  *
      48             :  * The standard test setup is done on a unit cube \f$[-0.5,0.5]^3\f$ with the
      49             :  * following values given for the options:
      50             :  * -  RotorRadius: 0.1
      51             :  * -  RotorDensity: 10.0
      52             :  * -  BackgroundDensity: 1.0
      53             :  * -  Pressure: 1.0
      54             :  * -  AngularVelocity: 9.95
      55             :  * -  MagneticField: [1.0, 0.0, 0.0]
      56             :  * -  AdiabaticIndex: 1.66666666666666667
      57             :  *
      58             :  * Note that \cite Zanotti2016efficient uses different parameters,
      59             :  * -  RotorRadius: 0.1
      60             :  * -  RotorDensity: 10.0
      61             :  * -  BackgroundDensity: 1.0
      62             :  * -  Pressure: 1.0
      63             :  * -  AngularVelocity: 9.3
      64             :  * -  MagneticField: [1.0, 0.0, 0.0]
      65             :  * -  AdiabaticIndex: 1.333333333333333
      66             :  *
      67             :  * The magnetic field in the disk should rotate by about 90 degrees by t = 0.4.
      68             :  */
      69           1 : class MagneticRotor : public evolution::initial_data::InitialData,
      70             :                       public MarkAsAnalyticData,
      71             :                       public AnalyticDataBase,
      72             :                       public hydro::TemperatureInitialization<MagneticRotor> {
      73             :  public:
      74           0 :   using equation_of_state_type = EquationsOfState::IdealFluid<true>;
      75             : 
      76             :   /// Radius of the rotor.
      77           1 :   struct RotorRadius {
      78           0 :     using type = double;
      79           0 :     static constexpr Options::String help = {
      80             :         "The initial radius of the rotor."};
      81           0 :     static type lower_bound() { return 0.0; }
      82             :   };
      83             :   /// Density inside the rotor.
      84           1 :   struct RotorDensity {
      85           0 :     using type = double;
      86           0 :     static constexpr Options::String help = {"Density inside RotorRadius."};
      87           0 :     static type lower_bound() { return 0.0; }
      88             :   };
      89             :   /// Density outside the rotor.
      90           1 :   struct BackgroundDensity {
      91           0 :     using type = double;
      92           0 :     static constexpr Options::String help = {"Density outside RotorRadius."};
      93           0 :     static type lower_bound() { return 0.0; }
      94             :   };
      95             :   /// Uniform pressure inside and outside the rotor.
      96           1 :   struct Pressure {
      97           0 :     using type = double;
      98           0 :     static constexpr Options::String help = {"Pressure."};
      99           0 :     static type lower_bound() { return 0.0; }
     100             :   };
     101             :   /// Angular velocity inside the rotor.
     102           1 :   struct AngularVelocity {
     103           0 :     using type = double;
     104           0 :     static constexpr Options::String help = {
     105             :         "Angular velocity of matter inside RotorRadius"};
     106             :   };
     107             :   /// The x,y,z components of the uniform magnetic field threading the matter.
     108           1 :   struct MagneticField {
     109           0 :     using type = std::array<double, 3>;
     110           0 :     static constexpr Options::String help = {
     111             :         "The x,y,z components of the uniform magnetic field."};
     112             :   };
     113             :   /// The adiabatic index of the ideal fluid.
     114           1 :   struct AdiabaticIndex {
     115           0 :     using type = double;
     116           0 :     static constexpr Options::String help = {
     117             :         "The adiabatic index of the ideal fluid."};
     118           0 :     static type lower_bound() { return 1.0; }
     119             :   };
     120             : 
     121           0 :   using options =
     122             :       tmpl::list<RotorRadius, RotorDensity, BackgroundDensity, Pressure,
     123             :                  AngularVelocity, MagneticField, AdiabaticIndex>;
     124             : 
     125           0 :   static constexpr Options::String help = {
     126             :       "Magnetic rotor analytic initial data."};
     127             : 
     128           0 :   MagneticRotor() = default;
     129           0 :   MagneticRotor(const MagneticRotor& /*rhs*/) = default;
     130           0 :   MagneticRotor& operator=(const MagneticRotor& /*rhs*/) = default;
     131           0 :   MagneticRotor(MagneticRotor&& /*rhs*/) = default;
     132           0 :   MagneticRotor& operator=(MagneticRotor&& /*rhs*/) = default;
     133           0 :   ~MagneticRotor() override = default;
     134             : 
     135           0 :   MagneticRotor(double rotor_radius, double rotor_density,
     136             :                 double background_density, double pressure,
     137             :                 double angular_velocity,
     138             :                 const std::array<double, 3>& magnetic_field,
     139             :                 double adiabatic_index, const Options::Context& context = {});
     140             : 
     141           0 :   auto get_clone() const
     142             :       -> std::unique_ptr<evolution::initial_data::InitialData> override;
     143             : 
     144             :   /// \cond
     145             :   explicit MagneticRotor(CkMigrateMessage* msg);
     146             :   using PUP::able::register_constructor;
     147             :   WRAPPED_PUPable_decl_template(MagneticRotor);
     148             :   /// \endcond
     149             : 
     150             :   /// @{
     151             :   /// Retrieve the GRMHD variables at a given position.
     152             :   template <typename DataType>
     153           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     154             :                  tmpl::list<hydro::Tags::RestMassDensity<DataType>> /*meta*/)
     155             :       const -> tuples::TaggedTuple<hydro::Tags::RestMassDensity<DataType>>;
     156             : 
     157             :   template <typename DataType>
     158           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     159             :                  tmpl::list<hydro::Tags::ElectronFraction<DataType>> /*meta*/)
     160             :       const -> tuples::TaggedTuple<hydro::Tags::ElectronFraction<DataType>>;
     161             : 
     162             :   template <typename DataType>
     163           1 :   auto variables(
     164             :       const tnsr::I<DataType, 3>& x,
     165             :       tmpl::list<hydro::Tags::SpecificInternalEnergy<DataType>> /*meta*/) const
     166             :       -> tuples::TaggedTuple<hydro::Tags::SpecificInternalEnergy<DataType>>;
     167             : 
     168             :   template <typename DataType>
     169           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     170             :                  tmpl::list<hydro::Tags::Pressure<DataType>> /*meta*/) const
     171             :       -> tuples::TaggedTuple<hydro::Tags::Pressure<DataType>>;
     172             : 
     173             :   template <typename DataType>
     174           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     175             :                  tmpl::list<hydro::Tags::SpatialVelocity<DataType, 3>> /*meta*/)
     176             :       const -> tuples::TaggedTuple<hydro::Tags::SpatialVelocity<DataType, 3>>;
     177             : 
     178             :   template <typename DataType>
     179           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     180             :                  tmpl::list<hydro::Tags::MagneticField<DataType, 3>> /*meta*/)
     181             :       const -> tuples::TaggedTuple<hydro::Tags::MagneticField<DataType, 3>>;
     182             : 
     183             :   template <typename DataType>
     184           1 :   auto variables(
     185             :       const tnsr::I<DataType, 3>& x,
     186             :       tmpl::list<hydro::Tags::DivergenceCleaningField<DataType>> /*meta*/) const
     187             :       -> tuples::TaggedTuple<hydro::Tags::DivergenceCleaningField<DataType>>;
     188             : 
     189             :   template <typename DataType>
     190           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     191             :                  tmpl::list<hydro::Tags::LorentzFactor<DataType>> /*meta*/)
     192             :       const -> tuples::TaggedTuple<hydro::Tags::LorentzFactor<DataType>>;
     193             : 
     194             :   template <typename DataType>
     195           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     196             :                  tmpl::list<hydro::Tags::SpecificEnthalpy<DataType>> /*meta*/)
     197             :       const -> tuples::TaggedTuple<hydro::Tags::SpecificEnthalpy<DataType>>;
     198             : 
     199             :   template <typename DataType>
     200           1 :   auto variables(const tnsr::I<DataType, 3>& x,
     201             :                  tmpl::list<hydro::Tags::Temperature<DataType>> /*meta*/) const
     202             :       -> tuples::TaggedTuple<hydro::Tags::Temperature<DataType>> {
     203             :     return TemperatureInitialization::variables(
     204             :         x, tmpl::list<hydro::Tags::Temperature<DataType>>{});
     205             :   }
     206             :   /// @}
     207             : 
     208             :   /// Retrieve a collection of hydrodynamic variables at position x
     209             :   template <typename DataType, typename Tag1, typename Tag2, typename... Tags>
     210           1 :   tuples::TaggedTuple<Tag1, Tag2, Tags...> variables(
     211             :       const tnsr::I<DataType, 3>& x,
     212             :       tmpl::list<Tag1, Tag2, Tags...> /*meta*/) const {
     213             :     return {tuples::get<Tag1>(variables(x, tmpl::list<Tag1>{})),
     214             :             tuples::get<Tag2>(variables(x, tmpl::list<Tag2>{})),
     215             :             tuples::get<Tags>(variables(x, tmpl::list<Tags>{}))...};
     216             :   }
     217             : 
     218             :   /// Retrieve the metric variables
     219             :   template <typename DataType, typename Tag,
     220             :             Requires<tmpl::list_contains_v<
     221             :                 gr::analytic_solution_tags<3, DataType>, Tag>> = nullptr>
     222           1 :   tuples::TaggedTuple<Tag> variables(const tnsr::I<DataType, 3>& x,
     223             :                                      tmpl::list<Tag> /*meta*/) const {
     224             :     constexpr double dummy_time = 0.0;
     225             :     return background_spacetime_.variables(x, dummy_time, tmpl::list<Tag>{});
     226             :   }
     227             : 
     228           0 :   const EquationsOfState::IdealFluid<true>& equation_of_state() const {
     229             :     return equation_of_state_;
     230             :   }
     231             : 
     232             :   // NOLINTNEXTLINE(google-runtime-references)
     233           0 :   void pup(PUP::er& /*p*/) override;
     234             : 
     235             :  private:
     236           0 :   double rotor_radius_ = std::numeric_limits<double>::signaling_NaN();
     237           0 :   double rotor_density_ = std::numeric_limits<double>::signaling_NaN();
     238           0 :   double background_density_ = std::numeric_limits<double>::signaling_NaN();
     239           0 :   double pressure_ = std::numeric_limits<double>::signaling_NaN();
     240           0 :   double angular_velocity_ = std::numeric_limits<double>::signaling_NaN();
     241           0 :   std::array<double, 3> magnetic_field_{
     242             :       {std::numeric_limits<double>::signaling_NaN(),
     243             :        std::numeric_limits<double>::signaling_NaN(),
     244             :        std::numeric_limits<double>::signaling_NaN()}};
     245           0 :   double adiabatic_index_ = std::numeric_limits<double>::signaling_NaN();
     246           0 :   EquationsOfState::IdealFluid<true> equation_of_state_{};
     247           0 :   gr::Solutions::Minkowski<3> background_spacetime_{};
     248             : 
     249           0 :   friend bool operator==(const MagneticRotor& lhs, const MagneticRotor& rhs);
     250             : 
     251           0 :   friend bool operator!=(const MagneticRotor& lhs, const MagneticRotor& rhs);
     252             : };
     253             : 
     254             : }  // namespace grmhd::AnalyticData

Generated by: LCOV version 1.14