SpECTRE Documentation Coverage Report
Current view: top level - ParallelAlgorithms/Amr/Criteria - Loehner.hpp Hit Total Coverage
Commit: 1f2210958b4f38fdc0400907ee7c6d5af5111418 Lines: 3 35 8.6 %
Date: 2025-12-05 05:03:31
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <array>
       7             : #include <cstddef>
       8             : #include <limits>
       9             : #include <pup.h>
      10             : #include <string>
      11             : #include <vector>
      12             : 
      13             : #include "DataStructures/DataBox/DataBox.hpp"
      14             : #include "DataStructures/DataBox/DataBoxTag.hpp"
      15             : #include "DataStructures/DataBox/ValidateSelection.hpp"
      16             : #include "DataStructures/DataVector.hpp"
      17             : #include "DataStructures/Tensor/Tensor.hpp"
      18             : #include "Domain/Amr/Flag.hpp"
      19             : #include "Domain/Tags.hpp"
      20             : #include "NumericalAlgorithms/Spectral/Mesh.hpp"
      21             : #include "Options/Context.hpp"
      22             : #include "Options/ParseError.hpp"
      23             : #include "Options/String.hpp"
      24             : #include "ParallelAlgorithms/Amr/Criteria/Criterion.hpp"
      25             : #include "ParallelAlgorithms/Amr/Criteria/Type.hpp"
      26             : #include "Utilities/TMPL.hpp"
      27             : 
      28             : /// \cond
      29             : template <size_t>
      30             : class ElementId;
      31             : /// \endcond
      32             : 
      33             : namespace amr::Criteria {
      34             : 
      35             : /// @{
      36             : /*!
      37             :  * \brief Computes an anisotropic smoothness indicator based on the magnitude of
      38             :  * second derivatives
      39             :  *
      40             :  * This smoothness indicator is simply the L2 norm of the logical second
      41             :  * derivative of the tensor component in the given `dimension`:
      42             :  *
      43             :  * \begin{equation}
      44             :  * \epsilon_k =
      45             :  *   \sqrt{\frac{1}{N_{\mathrm{points}}} \sum_{p=1}^{N_\mathrm{points}}
      46             :  *     \left(\partial^2 u / \partial \xi_k^2\right)^2}
      47             :  * \end{equation}
      48             :  *
      49             :  * If the smoothness indicator is large in a direction, meaning the tensor
      50             :  * component has a large second derivative in that direction, the element should
      51             :  * be h-refined. If the smoothness indicator is small, the element should be
      52             :  * h-coarsened. A coarsing threshold of about a third of the refinement
      53             :  * threshold seems to work well, but this will need more testing.
      54             :  *
      55             :  * Note that it is not at all clear that a smoothness indicator based on the
      56             :  * magnitude of second derivatives is useful in a DG context. Smooth functions
      57             :  * with higher-order derivatives can be approximated just fine by higher-order
      58             :  * DG elements without the need for h-refinement. The use of second derivatives
      59             :  * to indicate the need for refinement originated in the finite element context
      60             :  * with linear elements. Other smoothness indicators might prove more useful for
      61             :  * DG elements, e.g. based on jumps or oscillations of the solution. We can also
      62             :  * explore applying the troubled-cell indicators (TCIs) used in hydrodynamic
      63             :  * simulations as h-refinement indicators.
      64             :  *
      65             :  * Specifically, this smoothness indicator is based on \cite Loehner1987 (hence
      66             :  * the name of the function), which is popular in the finite element community
      67             :  * and also used in a DG context by \cite Dumbser2013, Eq. (34), and by
      68             :  * \cite Renkhoff2023, Eq. (15). We make several modifications:
      69             :  *
      70             :  * - The original smoothness indicator is isotropic, i.e. it computes the norm
      71             :  *   over all (mixed) second derivatives. Here we compute an anisotropic
      72             :  *   indicator by computing second derivatives in each dimension separately
      73             :  *   and ignoring mixed derivatives.
      74             :  * - The original smoothness indicator is normalized by measures of the first
      75             :  *   derivative which don't generalize well to spectral elements. Therefore, we
      76             :  *   simplify the normalization to a standard relative and absolute tolerance.
      77             :  *   An alternative approach is proposed in \cite Renkhoff2023, Eq.(15), where
      78             :  *   the authors take the absolute value of the differentiation matrix and apply
      79             :  *   the resulting matrix to the absolute value of the data on the grid to
      80             :  *   compute the normalization. However, this quantity can produce quite large
      81             :  *   numbers and hence overestimates the smoothness by suppressing the second
      82             :  *   derivative.
      83             :  * - We compute the second derivative in logical coordinates. This seems
      84             :  *   easiest for spectral elements, but note that \cite Renkhoff2023 seem to
      85             :  *   use inertial coordinates.
      86             :  *
      87             :  * In addition to the above modifications, we can consider approximating the
      88             :  * second derivative using finite differences, as explored in the prototype
      89             :  * https://github.com/sxs-collaboration/dg-charm/blob/HpAmr/Evolution/HpAmr/LohnerRefiner.hpp.
      90             :  * This would allow falling back to the normalization used by Löhner and might
      91             :  * be cheaper to compute, but it requires an interpolation to the center and
      92             :  * maybe also to the faces, depending on the desired stencil.
      93             :  */
      94             : template <typename VectorType, size_t Dim>
      95           1 : double loehner_smoothness_indicator(
      96             :     gsl::not_null<VectorType*> first_deriv_buffer,
      97             :     gsl::not_null<VectorType*> second_deriv_buffer,
      98             :     const VectorType& tensor_component, const Mesh<Dim>& mesh,
      99             :     size_t dimension);
     100             : template <typename VectorType, size_t Dim>
     101           1 : std::array<double, Dim> loehner_smoothness_indicator(
     102             :     const VectorType& tensor_component, const Mesh<Dim>& mesh);
     103             : /// @}
     104             : 
     105             : namespace Loehner_detail {
     106             : template <typename VectorType, size_t Dim>
     107             : void max_over_components(
     108             :     gsl::not_null<std::array<Flag, Dim>*> result,
     109             :     gsl::not_null<std::array<VectorType, 2>*> deriv_buffers,
     110             :     const VectorType& tensor_component, const Mesh<Dim>& mesh,
     111             :     double relative_tolerance, double absolute_tolerance,
     112             :     double coarsening_factor);
     113             : }
     114             : 
     115             : /*!
     116             :  * \brief h-refine the grid based on a smoothness indicator
     117             :  *
     118             :  * The smoothness indicator used here is based on the magnitude of second
     119             :  * derivatives. See `amr::Criteria::loehner_smoothness_indicator` for details
     120             :  * and caveats.
     121             :  *
     122             :  * \see amr::Criteria::loehner_smoothness_indicator
     123             :  */
     124             : template <size_t Dim, typename TensorTags>
     125           1 : class Loehner : public Criterion {
     126             :  public:
     127           0 :   struct VariablesToMonitor {
     128           0 :     using type = std::vector<std::string>;
     129           0 :     static constexpr Options::String help = {
     130             :         "The tensors to monitor for h-refinement."};
     131           0 :     static size_t lower_bound_on_size() { return 1; }
     132             :   };
     133           0 :   struct RelativeTolerance {
     134           0 :     using type = double;
     135           0 :     static constexpr Options::String help = {
     136             :         "If any tensor component has a second derivative magnitude above this "
     137             :         "value times the max of the absolute tensor component over the "
     138             :         "element, the element will be h-refined in that direction. "
     139             :         "Set to 0 to disable."};
     140           0 :     static double lower_bound() { return 0.; }
     141             :   };
     142           0 :   struct AbsoluteTolerance {
     143           0 :     using type = double;
     144           0 :     static constexpr Options::String help = {
     145             :         "If any tensor component has a second derivative magnitude above this "
     146             :         "value, the element will be h-refined in that direction. "
     147             :         "Set to 0 to disable."};
     148           0 :     static double lower_bound() { return 0.; }
     149             :   };
     150           0 :   struct CoarseningFactor {
     151           0 :     using type = double;
     152           0 :     static constexpr Options::String help = {
     153             :         "Factor applied to both relative and absolute tolerance to trigger "
     154             :         "h-coarsening. Set to 0 to disable h-coarsening altogether. "
     155             :         "Set closer to 1 to trigger h-coarsening more aggressively. "
     156             :         "Values too close to 1 risk that coarsened elements will immediately "
     157             :         "trigger h-refinement again. A reasonable value is 1/3."};
     158           0 :     static double lower_bound() { return 0.; }
     159           0 :     static double upper_bound() { return 1.; }
     160             :   };
     161             : 
     162           0 :   using options = tmpl::list<VariablesToMonitor, RelativeTolerance,
     163             :                              AbsoluteTolerance, CoarseningFactor>;
     164             : 
     165           0 :   static constexpr Options::String help = {
     166             :       "Refine the grid towards resolving an estimated error in the second "
     167             :       "derivative"};
     168             : 
     169           0 :   Loehner() = default;
     170             : 
     171           0 :   Loehner(std::vector<std::string> vars_to_monitor, double relative_tolerance,
     172             :           double absolute_tolerance, double coarsening_factor,
     173             :           const Options::Context& context = {});
     174             : 
     175             :   /// \cond
     176             :   explicit Loehner(CkMigrateMessage* msg);
     177             :   using PUP::able::register_constructor;
     178             :   WRAPPED_PUPable_decl_template(Loehner);  // NOLINT
     179             :   /// \endcond
     180             : 
     181           0 :   Type type() override { return Type::h; }
     182             : 
     183           0 :   std::string observation_name() override { return "Loehner"; }
     184             : 
     185           0 :   using compute_tags_for_observation_box = tmpl::list<>;
     186             : 
     187           0 :   using argument_tags = tmpl::list<::Tags::DataBox>;
     188             : 
     189             :   template <typename DbTagsList, typename Metavariables>
     190           0 :   std::array<Flag, Dim> operator()(const db::DataBox<DbTagsList>& box,
     191             :                                    Parallel::GlobalCache<Metavariables>& cache,
     192             :                                    const ElementId<Dim>& element_id) const;
     193             : 
     194           0 :   void pup(PUP::er& p) override;
     195             : 
     196             :  private:
     197           0 :   std::vector<std::string> vars_to_monitor_{};
     198           0 :   double relative_tolerance_ = std::numeric_limits<double>::signaling_NaN();
     199           0 :   double absolute_tolerance_ = std::numeric_limits<double>::signaling_NaN();
     200           0 :   double coarsening_factor_ = std::numeric_limits<double>::signaling_NaN();
     201             : };
     202             : 
     203             : // Out-of-line definitions
     204             : /// \cond
     205             : 
     206             : template <size_t Dim, typename TensorTags>
     207             : Loehner<Dim, TensorTags>::Loehner(std::vector<std::string> vars_to_monitor,
     208             :                                   const double relative_tolerance,
     209             :                                   const double absolute_tolerance,
     210             :                                   const double coarsening_factor,
     211             :                                   const Options::Context& context)
     212             :     : vars_to_monitor_(std::move(vars_to_monitor)),
     213             :       relative_tolerance_(relative_tolerance),
     214             :       absolute_tolerance_(absolute_tolerance),
     215             :       coarsening_factor_(coarsening_factor) {
     216             :   db::validate_selection<TensorTags>(vars_to_monitor_, context);
     217             :   if (relative_tolerance == 0. and absolute_tolerance == 0.) {
     218             :     PARSE_ERROR(
     219             :         context,
     220             :         "Must specify non-zero RelativeTolerance, AbsoluteTolerance, or both.");
     221             :   }
     222             : }
     223             : 
     224             : template <size_t Dim, typename TensorTags>
     225             : Loehner<Dim, TensorTags>::Loehner(CkMigrateMessage* msg) : Criterion(msg) {}
     226             : 
     227             : template <size_t Dim, typename TensorTags>
     228             : template <typename DbTagsList, typename Metavariables>
     229             : std::array<Flag, Dim> Loehner<Dim, TensorTags>::operator()(
     230             :     const db::DataBox<DbTagsList>& box,
     231             :     Parallel::GlobalCache<Metavariables>& /*cache*/,
     232             :     const ElementId<Dim>& /*element_id*/) const {
     233             :   auto result = make_array<Dim>(Flag::Undefined);
     234             :   const auto& mesh = db::get<domain::Tags::Mesh<Dim>>(box);
     235             :   using VectorType = typename Variables<TensorTags>::vector_type;
     236             :   // Check all tensors and all tensor components in turn. We take the
     237             :   // highest-priority refinement flag in each dimension, so if any tensor
     238             :   // component is non-smooth, the element will split in that dimension. And only
     239             :   // if all tensor components are smooth enough will elements join in that
     240             :   // dimension.
     241             :   std::array<VectorType, 2> deriv_buffers{};
     242             :   tmpl::for_each<TensorTags>(
     243             :       [&result, &box, &mesh, &deriv_buffers, this](const auto tag_v) {
     244             :         // Stop if we have already decided to refine every dimension
     245             :         if (result == make_array<Dim>(Flag::Split)) {
     246             :           return;
     247             :         }
     248             :         using tag = tmpl::type_from<std::decay_t<decltype(tag_v)>>;
     249             :         const std::string tag_name = db::tag_name<tag>();
     250             :         // Skip if this tensor is not being monitored
     251             :         if (not alg::found(vars_to_monitor_, tag_name)) {
     252             :           return;
     253             :         }
     254             :         const auto& tensor = db::get<tag>(box);
     255             :         for (const VectorType& tensor_component : tensor) {
     256             :           Loehner_detail::max_over_components(
     257             :               make_not_null(&result), make_not_null(&deriv_buffers),
     258             :               tensor_component, mesh, relative_tolerance_, absolute_tolerance_,
     259             :               coarsening_factor_);
     260             :         }
     261             :       });
     262             :   return result;
     263             : }
     264             : 
     265             : template <size_t Dim, typename TensorTags>
     266             : void Loehner<Dim, TensorTags>::pup(PUP::er& p) {
     267             :   p | vars_to_monitor_;
     268             :   p | relative_tolerance_;
     269             :   p | absolute_tolerance_;
     270             :   p | coarsening_factor_;
     271             : }
     272             : 
     273             : template <size_t Dim, typename TensorTags>
     274             : PUP::able::PUP_ID Loehner<Dim, TensorTags>::my_PUP_ID = 0;  // NOLINT
     275             : /// \endcond
     276             : 
     277             : }  // namespace amr::Criteria

Generated by: LCOV version 1.14