Line data Source code
1 0 : // Distributed under the MIT License. 2 : // See LICENSE.txt for details. 3 : 4 : #pragma once 5 : 6 : #include <cstddef> 7 : 8 : /// \cond 9 : class DataVector; 10 : template <size_t> 11 : class Mesh; 12 : namespace Spectral { 13 : enum class Basis : uint8_t; 14 : enum class Quadrature : uint8_t; 15 : } // namespace Spectral 16 : /// \endcond 17 : 18 : namespace Spectral { 19 : /*! 20 : * \brief Weights to compute definite integrals. 21 : * 22 : * \details These are the coefficients to contract with the nodal 23 : * function values \f$f_k\f$ to approximate the definite integral \f$I[f]=\int 24 : * f(x)\mathrm{d}x\f$. 25 : * 26 : * Note that the term _quadrature_ also often refers to the quantity 27 : * \f$Q[f]=\int f(x)w(x)\mathrm{d}x\approx \sum_k f_k w_k\f$. Here, \f$w(x)\f$ 28 : * denotes the basis-specific weight function w.r.t. to which the basis 29 : * functions \f$\Phi_k\f$ are orthogonal, i.e \f$\int\Phi_i(x)\Phi_j(x)w(x)=0\f$ 30 : * for \f$i\neq j\f$. The weights \f$w_k\f$ approximate this inner product. To 31 : * approximate the definite integral \f$I[f]\f$ we must employ the 32 : * coefficients \f$\frac{w_k}{w(\xi_k)}\f$ instead, where the \f$\xi_k\f$ are 33 : * the collocation points. These are the coefficients this function returns. 34 : * Only for a unit weight function \f$w(x)=1\f$, i.e. a Legendre basis, is 35 : * \f$I[f]=Q[f]\f$ so this function returns the \f$w_k\f$ identically. 36 : * 37 : * For a `FiniteDifference` basis or `CellCentered` and `FaceCentered` 38 : * quadratures, the interpretation of the quadrature weights in term 39 : * of an approximation to \f$I(q)\f$ remains correct, but its explanation 40 : * in terms of orthonormal basis is not, i.e. we set \f$w_k\f$ to the grid 41 : * spacing at each point, and the inverse weight \f$\frac{1}{w(\xi_k)}=1\f$ to 42 : * recover the midpoint method for definite integrals. 43 : * 44 : * \param num_points The number of collocation points 45 : */ 46 : template <Basis BasisType, Quadrature QuadratureType> 47 1 : const DataVector& quadrature_weights(size_t num_points); 48 : 49 : /*! 50 : * \brief Quadrature weights for a one-dimensional mesh. 51 : * 52 : * \see quadrature_weights(size_t) 53 : */ 54 1 : const DataVector& quadrature_weights(const Mesh<1>& mesh); 55 : } // namespace Spectral