Line data Source code
1 0 : // Distributed under the MIT License. 2 : // See LICENSE.txt for details. 3 : 4 : #pragma once 5 : 6 : #include <cstddef> 7 : 8 : #include "DataStructures/VariablesTag.hpp" 9 : #include "Evolution/Systems/CurvedScalarWave/System.hpp" 10 : #include "Evolution/Systems/GeneralizedHarmonic/System.hpp" 11 : #include "Evolution/Systems/ScalarTensor/BoundaryConditions/BoundaryCondition.hpp" 12 : #include "Evolution/Systems/ScalarTensor/Characteristics.hpp" 13 : #include "Evolution/Systems/ScalarTensor/Tags.hpp" 14 : #include "Evolution/Systems/ScalarTensor/TimeDerivative.hpp" 15 : #include "PointwiseFunctions/GeneralRelativity/Tags.hpp" 16 : #include "Utilities/TMPL.hpp" 17 : 18 : /*! 19 : * \ingroup EvolutionSystemsGroup 20 : * \brief Items related to evolving the first-order scalar tensor system. 21 : */ 22 : namespace ScalarTensor { 23 : /*! 24 : * \brief Scalar Tensor system obtained from combining the CurvedScalarWave and 25 : * gh systems. 26 : * 27 : * \details The evolution equations follow from 28 : * \f{align*}{ 29 : * R_{ab} &= 8 \pi \, T^{(\Psi, \text{TR})}_{ab} ~, \\ 30 : * \Box \Psi &= 0~, 31 : * \f} 32 : * 33 : * where \f$\Psi\f$ is the scalar field and the trace-reversed stress-energy 34 : * tensor of the scalar field is given by 35 : * \f{align*}{ 36 : T^{(\Psi, \text{TR})}_{ab} 37 : * &\equiv T^{(\Psi)}_{ab} - \frac{1}{2} g_{ab} g^{cd} T^{(\Psi)}_{cd} \\ 38 : * &= \partial_a \Psi \partial_b \Psi ~. 39 : * \f} 40 : * 41 : * Both systems are recast as first-order systems in terms of the variables 42 : * \f{align*}{ 43 : * & g_{ab}~, \\ 44 : * & \Pi_{ab} = - \dfrac{1}{\alpha} \left( \partial_t g_{ab} - \beta^k 45 : * \partial_k g_{ab} \right)~, \\ 46 : * & \Phi_{iab} = \partial_i g_{ab}~, \\ 47 : * & \Psi~, \\ 48 : * & \Pi = - \dfrac{1}{\alpha} \left(\partial_t \Psi - \beta^k 49 : * \partial_k \Psi \right)~, \\ 50 : * & \Phi_i = \partial_i \Psi~, 51 : * \f} 52 : * 53 : * where \f$ \alpha \f$ and \f$ \beta^k \f$ are the lapse and shift. 54 : * 55 : * The computation of the evolution equations is implemented in each system in 56 : * gh::TimeDerivative and CurvedScalarWave::TimeDerivative, respectively. We 57 : * take the additional step of adding the contribution of the trace-reversed 58 : * stress-energy tensor to the evolution equations of the metric. 59 : * 60 : * \note Although both systems are templated in the spatial dimension, we 61 : * only implement this system in three spatial dimensions. 62 : */ 63 1 : struct System { 64 0 : using boundary_conditions_base = BoundaryConditions::BoundaryCondition; 65 0 : static constexpr bool has_primitive_and_conservative_vars = false; 66 0 : static constexpr size_t volume_dim = 3; 67 : 68 0 : using gh_system = gh::System<3_st>; 69 0 : using scalar_system = CurvedScalarWave::System<3_st>; 70 : 71 0 : using variables_tag = ::Tags::Variables< 72 : tmpl::append<typename gh_system::variables_tag::tags_list, 73 : typename scalar_system::variables_tag::tags_list>>; 74 : 75 0 : using flux_variables = tmpl::append<typename gh_system::flux_variables, 76 : typename scalar_system::flux_variables>; 77 : 78 0 : using gradient_variables = 79 : tmpl::append<typename gh_system::gradient_variables, 80 : typename scalar_system::gradient_variables>; 81 0 : using gradients_tags = gradient_variables; 82 : 83 0 : static constexpr bool is_in_flux_conservative_form = false; 84 : 85 0 : using compute_largest_characteristic_speed = 86 : Tags::ComputeLargestCharacteristicSpeed<>; 87 : 88 0 : using compute_volume_time_derivative_terms = ScalarTensor::TimeDerivative; 89 0 : using inverse_spatial_metric_tag = 90 : typename gh_system::inverse_spatial_metric_tag; 91 : }; 92 : 93 : } // namespace ScalarTensor