SpECTRE Documentation Coverage Report
Current view: top level - Evolution/Systems/NewtonianEuler - Characteristics.hpp Hit Total Coverage
Commit: 361cb8d8406bb752684a5f31c27320ec444a50e3 Lines: 6 19 31.6 %
Date: 2025-11-09 02:02:04
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <array>
       7             : #include <cstddef>
       8             : 
       9             : #include "DataStructures/DataBox/Tag.hpp"
      10             : #include "DataStructures/Matrix.hpp"
      11             : #include "DataStructures/Tensor/EagerMath/Magnitude.hpp"
      12             : #include "DataStructures/Tensor/Tensor.hpp"
      13             : #include "DataStructures/Tensor/TypeAliases.hpp"
      14             : #include "Domain/FaceNormal.hpp"
      15             : #include "Evolution/Systems/NewtonianEuler/Tags.hpp"
      16             : #include "PointwiseFunctions/Hydro/Tags.hpp"
      17             : #include "Utilities/Gsl.hpp"
      18             : #include "Utilities/TMPL.hpp"
      19             : 
      20             : /// \cond
      21             : class DataVector;
      22             : /// \endcond
      23             : 
      24             : namespace NewtonianEuler {
      25             : 
      26             : namespace detail {
      27             : // Compute the flux Jacobian for the NewtonianEuler system
      28             : //
      29             : // The flux Jacobian is \f$n_i A^i = n_i \partial F^i / \partial U\f$.
      30             : // The input `b_times_theta` is \f$b\theta = \kappa/\rho (v^2 - h) + c_s^2\f$.
      31             : //
      32             : // This is used for:
      33             : // - testing the analytic characteristic transformation
      34             : // - as input for the numerical characteristic transformation
      35             : template <size_t Dim>
      36             : Matrix flux_jacobian(const tnsr::I<double, Dim>& velocity,
      37             :                      double kappa_over_density, double b_times_theta,
      38             :                      double specific_enthalpy,
      39             :                      const tnsr::i<double, Dim>& unit_normal);
      40             : }  // namespace detail
      41             : 
      42             : /// @{
      43             : /*!
      44             :  * \brief Compute the characteristic speeds of NewtonianEuler system
      45             :  *
      46             :  * The principal symbol of the system is diagonalized so that the elements of
      47             :  * the diagonal matrix are the characteristic speeds
      48             :  *
      49             :  * \f{align*}
      50             :  * \lambda_1 &= v_n - c_s,\\
      51             :  * \lambda_{i + 1} &= v_n,\\
      52             :  * \lambda_{\text{Dim} + 2} &= v_n + c_s,
      53             :  * \f}
      54             :  *
      55             :  * where \f$i = 1,...,\text{Dim}\f$,
      56             :  * \f$v_n = n_i v^i\f$ is the velocity projected onto the normal,
      57             :  * and \f$c_s\f$ is the sound speed.
      58             :  */
      59             : template <size_t Dim>
      60           1 : void characteristic_speeds(
      61             :     gsl::not_null<std::array<DataVector, Dim + 2>*> char_speeds,
      62             :     const tnsr::I<DataVector, Dim>& velocity,
      63             :     const Scalar<DataVector>& sound_speed,
      64             :     const tnsr::i<DataVector, Dim>& normal);
      65             : 
      66             : template <size_t Dim>
      67           1 : std::array<DataVector, Dim + 2> characteristic_speeds(
      68             :     const tnsr::I<DataVector, Dim>& velocity,
      69             :     const Scalar<DataVector>& sound_speed,
      70             :     const tnsr::i<DataVector, Dim>& normal);
      71             : /// @}
      72             : 
      73             : /// @{
      74             : /*!
      75             :  * \brief Compute the transform matrices between the conserved variables and
      76             :  * the characteristic variables of the NewtonianEuler system.
      77             :  *
      78             :  * Let \f$u\f$ be the conserved (i.e., evolved) variables of the Newtonian Euler
      79             :  * system, and \f$w\f$ the characteristic variables of this system with respect
      80             :  * to a unit normal one form \f$n_i\f$.  The function `left_eigenvectors`
      81             :  * computes the matrix \f$\Omega_{L}\f$ corresponding to the transform
      82             :  * \f$w = \Omega_{L} u\f$. The function `right_eigenvectors` computes the matrix
      83             :  * \f$\Omega_{R}\f$ corresponding to the inverse transform
      84             :  * \f$u = \Omega_{R} w\f$. Here the components of \f$u\f$ are ordered as
      85             :  * \f$u = \{\rho, \rho v_x, \rho v_y, \rho v_z, e\}\f$ in 3D, and the components
      86             :  * of \f$w\f$ are ordered by their corresponding eigenvalues
      87             :  * (i.e., characteristic speeds)
      88             :  * \f$\lambda = \{v_n - c_s, v_n, v_n, v_n, v_n + c_s\}\f$. In these
      89             :  * expressions, \f$\rho\f$ is the fluid mass density, \f$v_{x,y,z}\f$ are the
      90             :  * components of the fluid velocity, \f$e\f$ is the total energy density,
      91             :  * \f$v_n\f$ is the component of the velocity along the unit normal \f$n_i\f$,
      92             :  * and \f$c_s\f$ is the sound speed.
      93             :  *
      94             :  * For a short discussion of the characteristic transformation and the matrices
      95             :  * \f$\Omega_{L}\f$ and \f$\Omega_{R}\f$, see \cite Kulikovskii2000 Chapter 3.
      96             :  *
      97             :  * Here we briefly summarize the procedure. With \f$F^x(u)\f$ the Newtonian
      98             :  * Euler flux in direction \f$x\f$, then the flux Jacobian along \f$x\f$ is the
      99             :  * matrix \f$A_x = \partial F^x_{\beta}(u) / \partial u_{\alpha}\f$. The indices
     100             :  * \f$\alpha, \beta\f$ range over the different evolved fields. In higher
     101             :  * dimensions, the flux Jacobian along the unit normal \f$n_i\f$ is
     102             :  * \f$A = n_x A_x + n_y A_y + n_z A_z\f$.
     103             :  * This matrix can be diagonalized as \f$A = \Omega_{R} \Lambda \Omega_{L}\f$.
     104             :  * Here \f$\Lambda = \mathrm{diag}(v_n - c_s, v_n, v_n, v_n, v_n + c_s)\f$
     105             :  * is a diagonal matrix containing the characteristic speeds; \f$\Omega_{R}\f$
     106             :  * is a matrix whose columns are the right eigenvectors of \f$A\f$;
     107             :  * \f$\Omega_{L}\f$ is the inverse of \f$R\f$.
     108             :  */
     109             : template <size_t Dim>
     110           1 : Matrix right_eigenvectors(const tnsr::I<double, Dim>& velocity,
     111             :                           const Scalar<double>& sound_speed_squared,
     112             :                           const Scalar<double>& specific_enthalpy,
     113             :                           const Scalar<double>& kappa_over_density,
     114             :                           const tnsr::i<double, Dim>& unit_normal);
     115             : 
     116             : template <size_t Dim>
     117           1 : Matrix left_eigenvectors(const tnsr::I<double, Dim>& velocity,
     118             :                          const Scalar<double>& sound_speed_squared,
     119             :                          const Scalar<double>& specific_enthalpy,
     120             :                          const Scalar<double>& kappa_over_density,
     121             :                          const tnsr::i<double, Dim>& unit_normal);
     122             : /// @}
     123             : 
     124             : /*!
     125             :  * \brief Compute the transform matrices between the conserved variables and
     126             :  * the characteristic variables of the NewtonianEuler system.
     127             :  *
     128             :  * See `right_eigenvectors` and `left_eigenvectors` for more details.
     129             :  *
     130             :  * However, note that this function computes the transformation (i.e., the
     131             :  * eigenvectors of the flux Jacobian) numerically, instead of using the analytic
     132             :  * expressions. This is useful as a proof-of-concept for more complicated
     133             :  * systems where the analytic expressions may not be known.
     134             :  */
     135             : template <size_t Dim>
     136           1 : std::pair<DataVector, std::pair<Matrix, Matrix>> numerical_eigensystem(
     137             :     const tnsr::I<double, Dim>& velocity,
     138             :     const Scalar<double>& sound_speed_squared,
     139             :     const Scalar<double>& specific_enthalpy,
     140             :     const Scalar<double>& kappa_over_density,
     141             :     const tnsr::i<double, Dim>& unit_normal);
     142             : 
     143           1 : namespace Tags {
     144             : 
     145             : template <size_t Dim>
     146           0 : struct CharacteristicSpeedsCompute : CharacteristicSpeeds<Dim>, db::ComputeTag {
     147           0 :   using base = CharacteristicSpeeds<Dim>;
     148           0 :   using argument_tags =
     149             :       tmpl::list<hydro::Tags::SpatialVelocity<DataVector, Dim>,
     150             :                  SoundSpeed<DataVector>,
     151             :                  ::Tags::Normalized<domain::Tags::UnnormalizedFaceNormal<Dim>>>;
     152             : 
     153           0 :   using return_type = std::array<DataVector, Dim + 2>;
     154             : 
     155           0 :   static constexpr void function(const gsl::not_null<return_type*> result,
     156             :                                  const tnsr::I<DataVector, Dim>& velocity,
     157             :                                  const Scalar<DataVector>& sound_speed,
     158             :                                  const tnsr::i<DataVector, Dim>& normal) {
     159             :     characteristic_speeds<Dim>(result, velocity, sound_speed, normal);
     160             :   }
     161             : };
     162             : 
     163           0 : struct LargestCharacteristicSpeed : db::SimpleTag {
     164           0 :   using type = double;
     165             : };
     166             : 
     167             : template <size_t Dim>
     168           0 : struct ComputeLargestCharacteristicSpeed : LargestCharacteristicSpeed,
     169             :                                            db::ComputeTag {
     170           0 :   using argument_tags =
     171             :       tmpl::list<hydro::Tags::SpatialVelocity<DataVector, Dim>,
     172             :                  Tags::SoundSpeed<DataVector>>;
     173           0 :   using return_type = double;
     174           0 :   using base = LargestCharacteristicSpeed;
     175           0 :   static void function(const gsl::not_null<double*> speed,
     176             :                        const tnsr::I<DataVector, Dim>& velocity,
     177             :                        const Scalar<DataVector>& sound_speed) {
     178             :     *speed = max(get(magnitude(velocity)) + get(sound_speed));
     179             :   }
     180             : };
     181             : }  // namespace Tags
     182             : }  // namespace NewtonianEuler

Generated by: LCOV version 1.14