Line data Source code
1 0 : // Distributed under the MIT License. 2 : // See LICENSE.txt for details. 3 : 4 : #pragma once 5 : 6 : #include <cstddef> 7 : #include <limits> 8 : #include <optional> 9 : #include <string> 10 : 11 : #include "Evolution/Systems/GrMhd/ValenciaDivClean/PrimitiveRecoveryData.hpp" 12 : 13 : /// \cond 14 : namespace EquationsOfState { 15 : template <bool, size_t> 16 : class EquationOfState; 17 : } // namespace EquationsOfState 18 : namespace grmhd::ValenciaDivClean { 19 : class PrimitiveFromConservativeOptions; 20 : } // namespace grmhd::ValenciaDivClean 21 : /// \endcond 22 : 23 1 : namespace grmhd::ValenciaDivClean::PrimitiveRecoverySchemes { 24 : 25 : /*! 26 : * \brief Compute the primitive variables from the conservative variables using 27 : * the scheme of \cite Kastaun2020uxr. 28 : * 29 : * In the notation of the Kastaun paper, `tau` is \f$D q)\f$, 30 : * `momentum_density_squared` is \f$r^2 D^2\f$, 31 : * `momentum_density_dot_magnetic_field` is \f$t D^{\frac{3}{2}}\f$, 32 : * `magnetic_field_squared` is \f$s D\f$, and 33 : * `rest_mass_density_times_lorentz_factor` is \f$D\f$. 34 : * Furthermore, the returned `PrimitiveRecoveryData.rho_h_w_squared` is \f$x 35 : * D\f$. 36 : * 37 : * In terms of the conservative variables (in our notation): 38 : * \f{align*} 39 : * q = & \frac{{\tilde \tau}}{{\tilde D}} \\ 40 : * r = & \frac{\gamma^{kl} {\tilde S}_k {\tilde S}_l}{{\tilde D}^2} \\ 41 : * t^2 = & \frac{({\tilde B}^k {\tilde S}_k)^2}{{\tilde D}^3 \sqrt{\gamma}} \\ 42 : * s = & \frac{\gamma_{kl} {\tilde B}^k {\tilde B}^l}{{\tilde D}\sqrt{\gamma}} 43 : * \f} 44 : * 45 : * where the conserved variables \f${\tilde D}\f$, \f${\tilde S}_i\f$, 46 : * \f${\tilde \tau}\f$, and \f${\tilde B}^i\f$ are a generalized mass-energy 47 : * density, momentum density, specific internal energy density, and magnetic 48 : * field, and \f$\gamma\f$ and \f$\gamma^{kl}\f$ are the determinant and inverse 49 : * of the spatial metric \f$\gamma_{kl}\f$. 50 : * 51 : * \note This scheme does not use the initial guess for the pressure. 52 : */ 53 1 : class KastaunEtAl { 54 : public: 55 : template <bool EnforcePhysicality, typename EosType> 56 0 : static std::optional<PrimitiveRecoveryData> apply( 57 : double initial_guess_pressure, double tau, 58 : double momentum_density_squared, 59 : double momentum_density_dot_magnetic_field, double magnetic_field_squared, 60 : double rest_mass_density_times_lorentz_factor, double electron_fraction, 61 : const EosType& equation_of_state, 62 : const grmhd::ValenciaDivClean::PrimitiveFromConservativeOptions& 63 : primitive_from_conservative_options); 64 : 65 0 : static const std::string name() { return "KastaunEtAl"; } 66 : 67 : private: 68 0 : static constexpr size_t max_iterations_ = 100; 69 0 : static constexpr double absolute_tolerance_ = 70 : 10.0 * std::numeric_limits<double>::epsilon(); 71 0 : static constexpr double relative_tolerance_ = 72 : 10.0 * std::numeric_limits<double>::epsilon(); 73 : }; 74 : } // namespace grmhd::ValenciaDivClean::PrimitiveRecoverySchemes