SpECTRE Documentation Coverage Report
Current view: top level - Evolution/Systems/GrMhd/ValenciaDivClean - Characteristics.hpp Hit Total Coverage
Commit: 5f72f487f258431bb3b56005e67f66868cd69bfc Lines: 6 19 31.6 %
Date: 2025-12-16 03:01:41
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <array>
       7             : #include <cstddef>
       8             : 
       9             : #include "DataStructures/DataBox/Tag.hpp"
      10             : #include "DataStructures/Tensor/EagerMath/Magnitude.hpp"
      11             : #include "DataStructures/Tensor/TypeAliases.hpp"
      12             : #include "Domain/FaceNormal.hpp"
      13             : #include "Evolution/Systems/GrMhd/ValenciaDivClean/Tags.hpp"
      14             : #include "PointwiseFunctions/GeneralRelativity/TagsDeclarations.hpp"
      15             : #include "PointwiseFunctions/Hydro/EquationsOfState/EquationOfState.hpp"
      16             : #include "PointwiseFunctions/Hydro/TagsDeclarations.hpp"
      17             : #include "Utilities/Gsl.hpp"
      18             : #include "Utilities/TMPL.hpp"
      19             : 
      20             : /// \cond
      21             : class DataVector;
      22             : namespace Tags {
      23             : template <typename Tag>
      24             : struct Normalized;
      25             : }  // namespace Tags
      26             : /// \endcond
      27             : 
      28             : namespace grmhd {
      29             : namespace ValenciaDivClean {
      30             : /// @{
      31             : /*!
      32             :  * \brief Compute the characteristic speeds for the Valencia formulation of
      33             :  * GRMHD with divergence cleaning.
      34             :  *
      35             :  * Obtaining the exact form of the characteristic speeds involves the solution
      36             :  * of a nontrivial quartic equation for the fast and slow modes. Here we make
      37             :  * use of a common approximation in the literature (e.g. \cite Gammie2003)
      38             :  * where the resulting characteristic speeds are analogous to those of the
      39             :  * Valencia formulation of the 3-D relativistic Euler system
      40             :  * (see RelativisticEuler::Valencia::characteristic_speeds),
      41             :  *
      42             :  * \f{align*}
      43             :  * \lambda_2 &= \alpha \Lambda^- - \beta_n,\\
      44             :  * \lambda_{3, 4, 5, 6, 7} &= \alpha v_n - \beta_n,\\
      45             :  * \lambda_{8} &= \alpha \Lambda^+ - \beta_n,
      46             :  * \f}
      47             :  *
      48             :  * with the substitution
      49             :  *
      50             :  * \f{align*}
      51             :  * c_s^2 \longrightarrow c_s^2 + v_A^2(1 - c_s^2)
      52             :  * \f}
      53             :  *
      54             :  * in the definition of \f$\Lambda^\pm\f$. Here \f$v_A\f$ is the Alfvén
      55             :  * speed. In addition, two more speeds corresponding to the divergence cleaning
      56             :  * mode and the longitudinal magnetic field are added,
      57             :  *
      58             :  * \f{align*}
      59             :  * \lambda_1 = -\alpha - \beta_n,\\
      60             :  * \lambda_9 = \alpha - \beta_n.
      61             :  * \f}
      62             :  *
      63             :  * \note The ordering assumed here is such that, in the Newtonian limit,
      64             :  * the exact expressions for \f$\lambda_{2, 8}\f$, \f$\lambda_{3, 7}\f$,
      65             :  * and \f$\lambda_{4, 6}\f$ should reduce to the
      66             :  * corresponding fast modes, Alfvén modes, and slow modes, respectively.
      67             :  * See \cite Dedner2002 for a detailed description of the hyperbolic
      68             :  * characterization of Newtonian MHD.  In terms of the primitive variables:
      69             :  *
      70             :  * \f{align*}
      71             :  * v^2 &= \gamma_{mn} v^m v^n \\
      72             :  * c_s^2 &= \frac{1}{h} \left[ \left( \frac{\partial p}{\partial \rho}
      73             :  * \right)_\epsilon +
      74             :  * \frac{p}{\rho^2} \left(\frac{\partial p}{\partial \epsilon}
      75             :  * \right)_\rho \right] \\
      76             :  * v_A^2 &= \frac{b^2}{b^2 + \rho h} \\
      77             :  * b^2 &= \frac{1}{W^2} \gamma_{mn} B^m B^n + \left( \gamma_{mn} B^m v^n
      78             :  * \right)^2
      79             :  * \f}
      80             :  *
      81             :  * where \f$\gamma_{mn}\f$ is the spatial metric, \f$\rho\f$ is the rest
      82             :  * mass density, \f$W = 1/\sqrt{1-v_i v^i}\f$ is the Lorentz factor, \f$h = 1 +
      83             :  * \epsilon + \frac{p}{\rho}\f$ is the specific enthalpy, \f$v^i\f$ is the
      84             :  * spatial velocity, \f$\epsilon\f$ is the specific internal energy, \f$p\f$ is
      85             :  * the pressure, and \f$B^i\f$ is the spatial magnetic field measured by an
      86             :  * Eulerian observer.
      87             :  */
      88             : 
      89             : template <size_t ThermodynamicDim>
      90           1 : std::array<DataVector, 9> characteristic_speeds_approximate_mhd(
      91             :     const Scalar<DataVector>& rest_mass_density,
      92             :     const Scalar<DataVector>& electron_fraction,
      93             :     const Scalar<DataVector>& specific_internal_energy,
      94             :     const Scalar<DataVector>& specific_enthalpy,
      95             :     const tnsr::I<DataVector, 3, Frame::Inertial>& spatial_velocity,
      96             :     const Scalar<DataVector>& lorentz_factor,
      97             :     const tnsr::I<DataVector, 3, Frame::Inertial>& magnetic_field,
      98             :     const Scalar<DataVector>& lapse, const tnsr::I<DataVector, 3>& shift,
      99             :     const tnsr::ii<DataVector, 3, Frame::Inertial>& spatial_metric,
     100             :     const tnsr::i<DataVector, 3>& unit_normal,
     101             :     const EquationsOfState::EquationOfState<true, ThermodynamicDim>&
     102             :         equation_of_state);
     103             : 
     104             : template <size_t ThermodynamicDim>
     105           1 : void characteristic_speeds_approximate_mhd(
     106             :     gsl::not_null<std::array<DataVector, 9>*> char_speeds,
     107             :     const Scalar<DataVector>& rest_mass_density,
     108             :     const Scalar<DataVector>& electron_fraction,
     109             :     const Scalar<DataVector>& specific_internal_energy,
     110             :     const Scalar<DataVector>& specific_enthalpy,
     111             :     const tnsr::I<DataVector, 3, Frame::Inertial>& spatial_velocity,
     112             :     const Scalar<DataVector>& lorentz_factor,
     113             :     const tnsr::I<DataVector, 3, Frame::Inertial>& magnetic_field,
     114             :     const Scalar<DataVector>& lapse, const tnsr::I<DataVector, 3>& shift,
     115             :     const tnsr::ii<DataVector, 3, Frame::Inertial>& spatial_metric,
     116             :     const tnsr::i<DataVector, 3>& unit_normal,
     117             :     const EquationsOfState::EquationOfState<true, ThermodynamicDim>&
     118             :         equation_of_state);
     119             : /// @}
     120             : 
     121             : /// @{
     122             : /*!
     123             :  * \brief Compute the characteristic speeds for the relativistic hydrodynamics
     124             :  * system in the Eulerian frame.
     125             :  *
     126             :  * These are the eigenvalues of the flux Jacobian projected along a spatial
     127             :  * direction with unit normal \f$ s_i\f$, measured by an Eulerian observer.
     128             :  * They consist of four degenerate modes and two non-degenerate modes:
     129             :  *
     130             :  * \f{align*}
     131             :  * \lambda_\mathrm{deg} &= v_n ,\\
     132             :  * \lambda_{\pm} &=
     133             :  *   \frac{ (1 - c_s^2)\,v_n \pm c_s\,d / W^2 }
     134             :  *        { 1 - v^2 c_s^2 }.
     135             :  * \f}
     136             :  *
     137             :  * where
     138             :  *
     139             :  * \f{align*}
     140             :  * d &\equiv
     141             :  *   W\,\sqrt{ 1 - v^2 c_s^2 - v_n^2(1 - c_s^2) } .
     142             :  * \f}
     143             :  *
     144             :  * The variables are defined as:
     145             :  *
     146             :  * \f{align*}
     147             :  * v^2 &= \gamma_{mn} v^m v^n ,\\
     148             :  * v_n &= v^a s_a ,\\
     149             :  * W &= \frac{1}{\sqrt{1 - v^a v_a}} ,\\
     150             :  * h &= 1 + \epsilon + \frac{p}{\rho} ,\\
     151             :  * c_s^2 &= \frac{1}{h}\left(\chi + \kappa \frac{p}{\rho^2}\right) ,
     152             :  * \f}
     153             :  *
     154             :  * The returned array has size 3 and contains the unique characteristic speeds:
     155             :  *  - `char_speeds[0]`: \f$v_n\f$ (degenerate eigenvalue, multiplicity 4 if the
     156             :  * electron fraction is included),
     157             :  *  - `char_speeds[1]`: \f$\lambda_+\f$ (right-propagating acoustic mode),
     158             :  *  - `char_speeds[2]`: \f$\lambda_-\f$ (left-propagating acoustic mode).
     159             :  */
     160             : 
     161             : template <size_t ThermodynamicDim>
     162           1 : void characteristic_speeds_hydro(
     163             :     gsl::not_null<std::array<DataVector, 3>*> pchar_speeds,
     164             :     const tnsr::I<DataVector, 3, Frame::Inertial>& spatial_velocity,
     165             :     const Scalar<DataVector>& rest_mass_density,
     166             :     const Scalar<DataVector>& specific_internal_energy,
     167             :     const Scalar<DataVector>& specific_enthalpy,
     168             :     const Scalar<DataVector>& electron_fraction,
     169             :     const Scalar<DataVector>& lorentz_factor,
     170             :     const tnsr::i<DataVector, 3>& unit_normal,
     171             :     const tnsr::ii<DataVector, 3, Frame::Inertial>& spatial_metric,
     172             :     const EquationsOfState::EquationOfState<true, ThermodynamicDim>&
     173             :         equation_of_state);
     174             : 
     175             : template <size_t ThermodynamicDim>
     176           1 : std::array<DataVector, 3> characteristic_speeds_hydro(
     177             :     const tnsr::I<DataVector, 3, Frame::Inertial>& spatial_velocity,
     178             :     const Scalar<DataVector>& rest_mass_density,
     179             :     const Scalar<DataVector>& specific_internal_energy,
     180             :     const Scalar<DataVector>& specific_enthalpy,
     181             :     const Scalar<DataVector>& electron_fraction,
     182             :     const Scalar<DataVector>& lorentz_factor,
     183             :     const tnsr::i<DataVector, 3>& unit_normal,
     184             :     const tnsr::ii<DataVector, 3, Frame::Inertial>& spatial_metric,
     185             :     const EquationsOfState::EquationOfState<true, ThermodynamicDim>&
     186             :         equation_of_state);
     187             : /// @}
     188             : 
     189           1 : namespace Tags {
     190             : /// \brief Compute the characteristic speeds for the Valencia formulation of
     191             : /// GRMHD with divergence cleaning.
     192             : ///
     193             : /// \details see grmhd::ValenciaDivClean::characteristic_speeds
     194           1 : struct CharacteristicSpeedsCompute : Tags::CharacteristicSpeeds,
     195             :                                      db::ComputeTag {
     196           0 :   using base = Tags::CharacteristicSpeeds;
     197           0 :   using argument_tags =
     198             :       tmpl::list<hydro::Tags::RestMassDensity<DataVector>,
     199             :                  hydro::Tags::ElectronFraction<DataVector>,
     200             :                  hydro::Tags::SpecificInternalEnergy<DataVector>,
     201             :                  hydro::Tags::SpecificEnthalpy<DataVector>,
     202             :                  hydro::Tags::SpatialVelocity<DataVector, 3>,
     203             :                  hydro::Tags::LorentzFactor<DataVector>,
     204             :                  hydro::Tags::MagneticField<DataVector, 3>,
     205             :                  gr::Tags::Lapse<DataVector>, gr::Tags::Shift<DataVector, 3>,
     206             :                  gr::Tags::SpatialMetric<DataVector, 3>,
     207             :                  ::Tags::Normalized<domain::Tags::UnnormalizedFaceNormal<3>>,
     208             :                  hydro::Tags::GrmhdEquationOfState>;
     209             : 
     210           0 :   using volume_tags = tmpl::list<hydro::Tags::GrmhdEquationOfState>;
     211             : 
     212           0 :   using return_type = std::array<DataVector, 9>;
     213             : 
     214             :   template <size_t ThermodynamicDim>
     215           0 :   void function(gsl::not_null<return_type*> result,
     216             :                 const Scalar<DataVector>& rest_mass_density,
     217             :                 const Scalar<DataVector>& /* electron_fraction */,
     218             :                 const Scalar<DataVector>& specific_internal_energy,
     219             :                 const Scalar<DataVector>& specific_enthalpy,
     220             :                 const tnsr::I<DataVector, 3, Frame::Inertial>& spatial_velocity,
     221             :                 const Scalar<DataVector>& lorentz_factor,
     222             :                 const tnsr::I<DataVector, 3, Frame::Inertial>& magnetic_field,
     223             :                 const Scalar<DataVector>& lapse,
     224             :                 const tnsr::I<DataVector, 3>& shift,
     225             :                 const tnsr::ii<DataVector, 3, Frame::Inertial>& spatial_metric,
     226             :                 const tnsr::i<DataVector, 3>& unit_normal,
     227             :                 const EquationsOfState::EquationOfState<true, ThermodynamicDim>&
     228             :                     equation_of_state);
     229             : };
     230             : 
     231           0 : struct LargestCharacteristicSpeed : db::SimpleTag {
     232           0 :   using type = double;
     233             : };
     234             : 
     235           0 : struct ComputeLargestCharacteristicSpeed : db::ComputeTag,
     236             :                                            LargestCharacteristicSpeed {
     237           0 :   using argument_tags =
     238             :       tmpl::list<gr::Tags::Lapse<DataVector>, gr::Tags::Shift<DataVector, 3>,
     239             :                  gr::Tags::SpatialMetric<DataVector, 3>>;
     240           0 :   using return_type = double;
     241           0 :   using base = LargestCharacteristicSpeed;
     242           0 :   static void function(gsl::not_null<double*> speed,
     243             :                        const Scalar<DataVector>& lapse,
     244             :                        const tnsr::I<DataVector, 3>& shift,
     245             :                        const tnsr::ii<DataVector, 3>& spatial_metric) {
     246             :     const auto shift_magnitude = magnitude(shift, spatial_metric);
     247             :     *speed = max(get(shift_magnitude) + get(lapse));
     248             :   }
     249             : };
     250             : }  // namespace Tags
     251             : }  // namespace ValenciaDivClean
     252             : }  // namespace grmhd

Generated by: LCOV version 1.14