SpECTRE Documentation Coverage Report
Current view: top level - Evolution/Systems/CurvedScalarWave/Worldtube - PunctureField.hpp Hit Total Coverage
Commit: fbcce2ed065a8e48da2f38009a84bbfbc0c260ee Lines: 5 6 83.3 %
Date: 2025-11-14 20:55:50
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <cstddef>
       7             : 
       8             : #include "DataStructures/DataBox/Prefixes.hpp"
       9             : #include "DataStructures/DataVector.hpp"
      10             : #include "DataStructures/Tensor/Tensor.hpp"
      11             : #include "DataStructures/Variables.hpp"
      12             : #include "Evolution/Systems/CurvedScalarWave/Tags.hpp"
      13             : #include "NumericalAlgorithms/LinearOperators/PartialDerivatives.hpp"
      14             : #include "Utilities/Gsl.hpp"
      15             : 
      16             : namespace CurvedScalarWave::Worldtube {
      17             : /*!
      18             :  * \brief Computes the puncture/singular field \f$\Psi^\mathcal{P}\f$ of a
      19             :  * scalar charge on a generic orbit in Schwarzschild spacetime.
      20             :  * described in \cite Detweiler2003.
      21             :  *
      22             :  * \details The field is computed using a Detweiler-Whiting singular
      23             :  * Green's function and perturbatively expanded in the geodesic distance from
      24             :  * the particle. It solves the inhomogeneous wave equation
      25             :  *
      26             :  * \f{align*}{
      27             :  * \Box \Psi^\mathcal{P} = -4 \pi q \int \sqrt{-g} \delta^4(x^i, z(\tau)) d \tau
      28             :  * \f}
      29             :  *
      30             :  * where \f$q\f$ is the scalar charge and \f$z(\tau)\f$ is the worldline of the
      31             :  * particle. The expression is expanded up to a certain order in geodesic
      32             :  * distance and transformed to Kerr-Schild coordinates.
      33             :  *
      34             :  * The function given here assumes that the particle has scalar charge \f$q=1\f$
      35             :  * and is on a fixed geodesic orbit. It returns the
      36             :  * singular field at the requested coordinates as well as its time and spatial
      37             :  * derivative. For non-geodesic orbits, corresponding acceleration terms have to
      38             :  * be added to the puncture field.
      39             :  *
      40             :  * \note The expressions were computed with Mathematica and optimized by
      41             :  * applying common subexpression elimination with sympy. The memory allocations
      42             :  * of temporaries were optimized manually.
      43             :  */
      44           1 : void puncture_field(
      45             :     gsl::not_null<Variables<tmpl::list<
      46             :         CurvedScalarWave::Tags::Psi, ::Tags::dt<CurvedScalarWave::Tags::Psi>,
      47             :         ::Tags::deriv<CurvedScalarWave::Tags::Psi, tmpl::size_t<3>,
      48             :                       Frame::Inertial>>>*>
      49             :         result,
      50             : 
      51             :     const tnsr::I<DataVector, 3, Frame::Inertial>& centered_coords,
      52             :     const tnsr::I<double, 3>& particle_position,
      53             :     const tnsr::I<double, 3>& particle_velocity,
      54             :     const tnsr::I<double, 3>& particle_acceleration, double bh_mass,
      55             :     size_t order);
      56             : 
      57             : /*!
      58             :  * \brief Computes the puncture/singular field \f$\Psi^\mathcal{P}\f$ of a
      59             :  * scalar charge on a generic orbit in Schwarzschild spacetime.
      60             :  * described in \cite Detweiler2003.
      61             :  *
      62             :  * \details The appropriate expression can be found in Eq. (36) of
      63             :  * \cite Wittek:2024gxn. For non-geodesic orbits, there are
      64             :  * additional contributions, see `acceleration_terms_0`.
      65             :  */
      66           1 : void puncture_field_0(
      67             :     gsl::not_null<Variables<tmpl::list<
      68             :         CurvedScalarWave::Tags::Psi, ::Tags::dt<CurvedScalarWave::Tags::Psi>,
      69             :         ::Tags::deriv<CurvedScalarWave::Tags::Psi, tmpl::size_t<3>,
      70             :                       Frame::Inertial>>>*>
      71             :         result,
      72             :     const tnsr::I<DataVector, 3, Frame::Inertial>& centered_coords,
      73             :     const tnsr::I<double, 3>& particle_position,
      74             :     const tnsr::I<double, 3>& particle_velocity,
      75             :     const tnsr::I<double, 3>& particle_acceleration, double bh_mass);
      76             : 
      77             : /*!
      78             :  * \brief Computes the puncture/singular field \f$\Psi^\mathcal{P}\f$ of a
      79             :  * scalar charge on a generic orbit in Schwarzschild spacetime.
      80             :  * described in \cite Detweiler2003.
      81             :  *
      82             :  * \details For non-geodesic orbits, there are additional contributions, see
      83             :  * `acceleration_terms_0`.
      84             :  */
      85           1 : void puncture_field_1(
      86             :     gsl::not_null<Variables<tmpl::list<
      87             :         CurvedScalarWave::Tags::Psi, ::Tags::dt<CurvedScalarWave::Tags::Psi>,
      88             :         ::Tags::deriv<CurvedScalarWave::Tags::Psi, tmpl::size_t<3>,
      89             :                       Frame::Inertial>>>*>
      90             :         result,
      91             :     const tnsr::I<DataVector, 3, Frame::Inertial>& centered_coords,
      92             :     const tnsr::I<double, 3>& particle_position,
      93             :     const tnsr::I<double, 3>& particle_velocity,
      94             :     const tnsr::I<double, 3>& particle_acceleration, double bh_mass);
      95             : 
      96             : /*!
      97             :  * \brief Computes the acceleration terms of a puncture/singular field
      98             :  * \f$\Psi^\mathcal{P}\f$ of a scalar charge on a generic orbit in Schwarzschild
      99             :  * spacetime up to zeroth order in coordinate distance.
     100             :  * \details The appropriate expression can be found in Eq. (37) of
     101             :  * \cite Wittek:2024gxn. The values ft, fx, fy are the time, x and y component
     102             :  * of the self force per unit mass evaluated at the position of the particle;
     103             :  * dt_ft, dt_fx, dt_fy are the respective total time derivatives. The code in
     104             :  * this function was auto-generated by generating the full expressions with
     105             :  * Mathematica and employing common subexpression elimination with sympy. The
     106             :  * mathematica file and generating script can be found at
     107             :  * https://github.com/nikwit/puncture-field.
     108             :  */
     109           1 : void acceleration_terms_0(
     110             :     gsl::not_null<Variables<tmpl::list<
     111             :         CurvedScalarWave::Tags::Psi, ::Tags::dt<CurvedScalarWave::Tags::Psi>,
     112             :         ::Tags::deriv<CurvedScalarWave::Tags::Psi, tmpl::size_t<3>,
     113             :                       Frame::Inertial>>>*>
     114             :         result,
     115             :     const tnsr::I<DataVector, 3, Frame::Inertial>& centered_coords,
     116             :     const tnsr::I<double, 3>& particle_position,
     117             :     const tnsr::I<double, 3>& particle_velocity,
     118             :     const tnsr::I<double, 3>& particle_acceleration, double ft, double fx,
     119             :     double fy, double dt_ft, double dt_fx, double dt_fy, double bh_mass);
     120             : 
     121             : /*!
     122             :  * \brief Computes the acceleration terms of a puncture/singular field
     123             :  * \f$\Psi^\mathcal{P}\f$ of a scalar charge on a generic orbit in Schwarzschild
     124             :  * spacetime up to first order in coordinate distance (i.e. zeroth and first
     125             :  * order).
     126             :  * \details The appropriate expression can be found in Eq. (37) of
     127             :  * \cite Wittek:2024gxn. The values ft, fx, fy are the time, x and y component
     128             :  * of the self force per unit mass evaluated at the position of the particle;
     129             :  * dt_ft, dt_fx, dt_fy are the respective total time derivatives. The code in
     130             :  * this function was auto-generated by generating the full expressions with
     131             :  * Mathematica and employing common subexpression elimination with sympy. The
     132             :  * mathematica file and generating script can be found at
     133             :  * https://github.com/nikwit/puncture-field.
     134             :  *
     135             :  */
     136           1 : void acceleration_terms_1(
     137             :     gsl::not_null<Variables<tmpl::list<
     138             :         CurvedScalarWave::Tags::Psi, ::Tags::dt<CurvedScalarWave::Tags::Psi>,
     139             :         ::Tags::deriv<CurvedScalarWave::Tags::Psi, tmpl::size_t<3>,
     140             :                       Frame::Inertial>>>*>
     141             :         result,
     142             :     const tnsr::I<DataVector, 3, Frame::Inertial>& centered_coords,
     143             :     const tnsr::I<double, 3>& particle_position,
     144             :     const tnsr::I<double, 3>& particle_velocity,
     145             :     const tnsr::I<double, 3>& particle_acceleration, double ft, double fx,
     146             :     double fy, double dt_ft, double dt_fx, double dt_fy, double Du_ft,
     147             :     double Du_fx, double Du_fy, double dt_Du_ft, double dt_Du_fx,
     148             :     double dt_Du_fy, double bh_mass);
     149             : }  // namespace CurvedScalarWave::Worldtube

Generated by: LCOV version 1.14