SpECTRE Documentation Coverage Report
Current view: top level - Evolution/Systems/Cce/AnalyticSolutions - BouncingBlackHole.hpp Hit Total Coverage
Commit: 37c384043430860f87787999aa7399d01bb3d213 Lines: 6 40 15.0 %
Date: 2024-04-20 02:24:02
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <cstddef>
       7             : #include <memory>
       8             : 
       9             : #include "DataStructures/SpinWeighted.hpp"
      10             : #include "DataStructures/Tensor/Tensor.hpp"
      11             : #include "Evolution/Systems/Cce/AnalyticSolutions/WorldtubeData.hpp"
      12             : #include "Evolution/Systems/Cce/Tags.hpp"
      13             : #include "Evolution/Systems/GeneralizedHarmonic/Tags.hpp"
      14             : #include "Options/String.hpp"
      15             : #include "PointwiseFunctions/GeneralRelativity/Tags.hpp"
      16             : #include "Utilities/Gsl.hpp"
      17             : #include "Utilities/Literals.hpp"
      18             : #include "Utilities/Serialization/CharmPupable.hpp"
      19             : #include "Utilities/TMPL.hpp"
      20             : 
      21             : /// \cond
      22             : class DataVector;
      23             : /// \endcond
      24             : 
      25           1 : namespace Cce::Solutions {
      26             : 
      27             : /*!
      28             :  * \brief Analytic solution representing a coordinate oscillation about a
      29             :  * stationary Schwarzschild black hole.
      30             :  *
      31             :  * \details As the oscillation in the metric data at the worldtube is a pure
      32             :  * coordinate effect, the system evolved using this worldtube data should
      33             :  * produce zero news. The solution is a coordinate transform applied to the
      34             :  * Schwarzschild solution in Kerr-Schild coordinates.
      35             :  */
      36           1 : struct BouncingBlackHole : public WorldtubeData {
      37           0 :   struct Amplitude {
      38           0 :     using type = double;
      39           0 :     static constexpr Options::String help{
      40             :         "The coordinate distance of the gauge oscillation"};
      41           0 :     static type lower_bound() { return 0.0; }
      42           0 :     static type suggested_value() { return 2.0; }
      43             :   };
      44           0 :   struct ExtractionRadius {
      45           0 :     using type = double;
      46           0 :     static constexpr Options::String help{
      47             :         "The extraction radius of the spherical solution"};
      48           0 :     static type lower_bound() { return 0.0; }
      49           0 :     static type suggested_value() { return 20.0; }
      50             :   };
      51           0 :   struct Mass {
      52           0 :     using type = double;
      53           0 :     static constexpr Options::String help{
      54             :         "The mass of the Schwarzschild black hole"};
      55           0 :     static type lower_bound() { return 0.0; }
      56           0 :     static type suggested_value() { return 1.0; }
      57             :   };
      58           0 :   struct Period {
      59           0 :     using type = double;
      60           0 :     static constexpr Options::String help{
      61             :         "The period of the coordinate oscillation"};
      62           0 :     static type lower_bound() { return 0.0; }
      63           0 :     static type suggested_value() { return 40.0; }
      64             :   };
      65             : 
      66           0 :   static constexpr Options::String help{
      67             :       "Analytic solution in which a static black hole is placed in an "
      68             :       "oscillating coordinate system"};
      69             : 
      70           0 :   using options = tmpl::list<Amplitude, ExtractionRadius, Mass, Period>;
      71             : 
      72           0 :   WRAPPED_PUPable_decl_template(BouncingBlackHole);  // NOLINT
      73             : 
      74           0 :   explicit BouncingBlackHole(CkMigrateMessage* msg) : WorldtubeData(msg) {}
      75             : 
      76             :   // clang doesn't manage to use = default correctly in this case
      77             :   // NOLINTNEXTLINE(modernize-use-equals-default)
      78           0 :   BouncingBlackHole() {}
      79             : 
      80           0 :   BouncingBlackHole(double amplitude, double extraction_radius, double mass,
      81             :                     double period);
      82             : 
      83           0 :   std::unique_ptr<WorldtubeData> get_clone() const override;
      84             : 
      85           0 :   void pup(PUP::er& p) override;
      86             : 
      87             :  protected:
      88             :   // The bouncing black hole solution is easily computed directly, so requires
      89             :   // no additional preparation.
      90           0 :   void prepare_solution(const size_t /*l_max*/,
      91             :                         const double /*time*/) const override{};
      92             : 
      93           0 :   using WorldtubeData::variables_impl;
      94             : 
      95             :   /*!
      96             :    * \brief The implementation function that computes the spacetime metric on
      97             :    * the extraction sphere at collocation points associated with angular
      98             :    * resolution `l_max`.
      99             :    *
     100             :    * \details The spacetime metric \f$g_{a b}\f$ is determined by evaluating the
     101             :    * Kerr-Schild metric at a set of transformed coordinates \f$t^\prime = t,
     102             :    * y^\prime = y, z^\prime = z\f$, and
     103             :    *
     104             :    * \f{align*}{
     105             :    * x = x^\prime + A \left(\sin\left(\frac{2 \pi t}{T}\right)\right)^4,
     106             :    * \f}
     107             :    *
     108             :    * where the amplitude \f$A\f$ is set by the option `Amplitude` and the period
     109             :    * \f$T\f$ is set by the option `Period`. In this notation we take
     110             :    * the primed coordinates to be the coordinates for which the black hole has
     111             :    * time-dependent coordinate position.
     112             :    */
     113           1 :   void variables_impl(
     114             :       gsl::not_null<tnsr::aa<DataVector, 3>*> spacetime_metric, size_t l_max,
     115             :       double time,
     116             :       tmpl::type_<gr::Tags::SpacetimeMetric<DataVector, 3>> /*meta*/)
     117             :       const override;
     118             : 
     119             :   /*!
     120             :    * \brief The implementation function that computes the first time derivative
     121             :    * of the spacetime metric on the extraction sphere.
     122             :    *
     123             :    * \details The time derivative of the spacetime metric
     124             :    * \f$\partial_t g_{a b}\f$ comes entirely from the Jacobian factor:
     125             :    *
     126             :    * \f{align*}{
     127             :    * \partial_t x = \frac{8 \pi A}{T} \cos\left(\frac{2 \pi t}{T}\right)
     128             :    * \left(\sin\left(\frac{2 \pi t}{T}\right)\right)^3,
     129             :    * \f}
     130             :    *
     131             :    * so the transformed metric derivative is,
     132             :    *
     133             :    * \f{align*}{
     134             :    * \partial_t g_{a^\prime b^\prime} = 2 \partial_{(a^\prime} \partial_t x
     135             :    * \partial_{b^\prime)} x^a g_{x a}.
     136             :    * \f}
     137             :    *
     138             :    * In this notation we take the primed coordinates to be the coordinates for
     139             :    * which the black hole has time-dependent coordinate position.
     140             :    */
     141           1 :   void variables_impl(
     142             :       gsl::not_null<tnsr::aa<DataVector, 3>*> dt_spacetime_metric, size_t l_max,
     143             :       double time,
     144             :       tmpl::type_<
     145             :           ::Tags::dt<gr::Tags::SpacetimeMetric<DataVector, 3>>> /*meta*/)
     146             :       const override;
     147             : 
     148             :   /*!
     149             :    * \brief The implementation function that computes the first spatial
     150             :    * derivative of the spacetime metric on the extraction sphere.
     151             :    *
     152             :    * \details The calculation proceeds by standard coordinate transform
     153             :    * techniques for the transformation given by \f$t^\prime = t,
     154             :    * y^\prime = y, z^\prime = z\f$, and
     155             :    *
     156             :    * \f{align*}{
     157             :    * x = x^\prime + A \left(\sin\left(\frac{2 \pi t}{T}\right)\right)^4,
     158             :    * \f}
     159             :    *
     160             :    * The general coordinate transformation formula that gives the metric
     161             :    * is then
     162             :    * \f{align*}{
     163             :    * \partial_a g_{b c} =
     164             :    * \partial_a \partial_b x^{\prime a^\prime} \partial_c x^{\prime b^\prime}
     165             :    * g_{a^\prime b^\prime}
     166             :    * + \partial_b x^{\prime a^\prime} \partial_a \partial_c x^{\prime b^\prime}
     167             :    * g_{a^\prime b^\prime}
     168             :    * + \partial_a x^{\prime a^\prime} \partial_b x^{\prime b^\prime}
     169             :    * \partial_c x^{\prime c^\prime} \partial_a g_{b c}
     170             :    * \f}
     171             :    */
     172           1 :   void variables_impl(
     173             :       gsl::not_null<tnsr::iaa<DataVector, 3>*> d_spacetime_metric, size_t l_max,
     174             :       double time,
     175             :       tmpl::type_<gh::Tags::Phi<DataVector, 3>> /*meta*/) const override;
     176             : 
     177             :   /// The News in the bouncing black hole solution vanishes, as the oscillation
     178             :   /// comes entirely from a coordinate transform.
     179           1 :   void variables_impl(
     180             :       gsl::not_null<Scalar<SpinWeighted<ComplexDataVector, -2>>*> news,
     181             :       size_t output_l_max, double time,
     182             :       tmpl::type_<Tags::News> /*meta*/) const override;
     183             : 
     184           0 :   double amplitude_ = std::numeric_limits<double>::signaling_NaN();
     185           0 :   double mass_ = std::numeric_limits<double>::signaling_NaN();
     186           0 :   double frequency_ = std::numeric_limits<double>::signaling_NaN();
     187             : };
     188             : }  // namespace Cce::Solutions

Generated by: LCOV version 1.14