SpECTRE Documentation Coverage Report
Current view: top level - Evolution/Particles/MonteCarlo - GhostZoneCommunication.hpp Hit Total Coverage
Commit: 6e1258ccd353220e12442198913007fb6c170b6b Lines: 4 15 26.7 %
Date: 2024-10-23 19:54:13
Legend: Lines: hit not hit

          Line data    Source code
       1           0 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : #pragma once
       5             : 
       6             : #include <optional>
       7             : #include <tuple>
       8             : #include <utility>
       9             : 
      10             : #include "DataStructures/DataBox/DataBox.hpp"
      11             : #include "DataStructures/DataVector.hpp"
      12             : #include "DataStructures/Index.hpp"
      13             : #include "DataStructures/Tensor/Tensor.hpp"
      14             : #include "Domain/Structure/Direction.hpp"
      15             : #include "Domain/Structure/DirectionalId.hpp"
      16             : #include "Domain/Structure/DirectionalIdMap.hpp"
      17             : #include "Domain/Structure/Element.hpp"
      18             : #include "Domain/Structure/ElementId.hpp"
      19             : #include "Domain/Structure/OrientationMapHelpers.hpp"
      20             : #include "Domain/Tags.hpp"
      21             : #include "Domain/Tags/NeighborMesh.hpp"
      22             : #include "Evolution/DgSubcell/ActiveGrid.hpp"
      23             : #include "Evolution/DgSubcell/GhostData.hpp"
      24             : #include "Evolution/DgSubcell/SliceData.hpp"
      25             : #include "Evolution/DgSubcell/Tags/ActiveGrid.hpp"
      26             : #include "Evolution/DgSubcell/Tags/Interpolators.hpp"
      27             : #include "Evolution/DgSubcell/Tags/Mesh.hpp"
      28             : #include "Evolution/Particles/MonteCarlo/GhostZoneCommunicationStep.hpp"
      29             : #include "Evolution/Particles/MonteCarlo/GhostZoneCommunicationTags.hpp"
      30             : #include "Evolution/Particles/MonteCarlo/MortarData.hpp"
      31             : #include "Evolution/Particles/MonteCarlo/Tags.hpp"
      32             : #include "Parallel/AlgorithmExecution.hpp"
      33             : #include "Parallel/GlobalCache.hpp"
      34             : #include "PointwiseFunctions/Hydro/TagsDeclarations.hpp"
      35             : #include "Time/TimeStepId.hpp"
      36             : #include "Utilities/ErrorHandling/Assert.hpp"
      37             : #include "Utilities/Gsl.hpp"
      38             : 
      39             : /// \cond
      40             : namespace Tags {
      41             : struct TimeStepId;
      42             : }  // namespace Tags
      43             : /// \endcond
      44             : 
      45             : namespace Particles::MonteCarlo::Actions {
      46             : 
      47             : /// Mutator to get required volume data for communication
      48             : /// before a MC step; i.e. data sent from live points
      49             : /// to ghost points in neighbors.
      50           1 : struct GhostDataMutatorPreStep {
      51           0 :   using return_tags = tmpl::list<>;
      52           0 :   using argument_tags = tmpl::list<
      53             :       hydro::Tags::RestMassDensity<DataVector>,
      54             :       hydro::Tags::ElectronFraction<DataVector>,
      55             :       hydro::Tags::Temperature<DataVector>,
      56             :       Particles::MonteCarlo::Tags::CellLightCrossingTime<DataVector>>;
      57           0 :   static const size_t number_of_vars = 4;
      58             : 
      59           0 :   static DataVector apply(const Scalar<DataVector>& rest_mass_density,
      60             :                           const Scalar<DataVector>& electron_fraction,
      61             :                           const Scalar<DataVector>& temperature,
      62             :                           const Scalar<DataVector>& cell_light_crossing_time) {
      63             :     const size_t dv_size = get(rest_mass_density).size();
      64             :     DataVector buffer{dv_size * number_of_vars};
      65             :     std::copy(
      66             :         get(rest_mass_density).data(),
      67             :         std::next(get(rest_mass_density).data(), static_cast<int>(dv_size)),
      68             :         buffer.data());
      69             :     std::copy(
      70             :         get(electron_fraction).data(),
      71             :         std::next(get(electron_fraction).data(), static_cast<int>(dv_size)),
      72             :         std::next(buffer.data(), static_cast<int>(dv_size)));
      73             :     std::copy(get(temperature).data(),
      74             :               std::next(get(temperature).data(), static_cast<int>(dv_size)),
      75             :               std::next(buffer.data(), static_cast<int>(dv_size * 2)));
      76             :     std::copy(get(cell_light_crossing_time).data(),
      77             :               std::next(get(cell_light_crossing_time).data(),
      78             :                         static_cast<int>(dv_size)),
      79             :               std::next(buffer.data(), static_cast<int>(dv_size * 3)));
      80             :     return buffer;
      81             :   }
      82             : };
      83             : 
      84             : /// Mutator that returns packets currently in ghost zones in a
      85             : /// DirectionMap<Dim,std::vector<Particles::MonteCarlo::Packet>>
      86             : /// and remove them from the list of packets of the current
      87             : /// element
      88             : template <size_t Dim>
      89           1 : struct GhostDataMcPackets {
      90           0 :   using return_tags = tmpl::list<Particles::MonteCarlo::Tags::PacketsOnElement>;
      91           0 :   using argument_tags = tmpl::list<::domain::Tags::Element<Dim>>;
      92             : 
      93           0 :   static DirectionMap<Dim, std::vector<Particles::MonteCarlo::Packet>> apply(
      94             :       const gsl::not_null<std::vector<Particles::MonteCarlo::Packet>*> packets,
      95             :       const Element<Dim>& element) {
      96             :     DirectionMap<Dim, std::vector<Particles::MonteCarlo::Packet>> output{};
      97             :     for (const auto& [direction, neighbors_in_direction] :
      98             :          element.neighbors()) {
      99             :       output[direction] = std::vector<Particles::MonteCarlo::Packet>{};
     100             :     }
     101             :     // Loop over packets. If a packet is out of the current element,
     102             :     // remove it from the element and copy it to the appropriate
     103             :     // neighbor list if it exists.
     104             :     // Note: At this point, we only handle simple boundaries
     105             :     // (one neighbor per direction, with the logical coordinates
     106             :     // being transformed by adding/removing 2). We assume that
     107             :     // packets that go out of the element but do not match any
     108             :     // neighbor have reached the domain boundary and can be removed.
     109             :     size_t n_packets = packets->size();
     110             :     for (size_t p = 0; p < n_packets; p++) {
     111             :       Packet& packet = (*packets)[p];
     112             :       std::optional<Direction<Dim>> max_distance_direction = std::nullopt;
     113             :       double max_distance = 0.0;
     114             :       // TO DO: Deal with dimensions higher than the grid dimension
     115             :       // e.g. for axisymmetric evolution
     116             :       for (size_t d = 0; d < Dim; d++) {
     117             :         if (packet.coordinates.get(d) < -1.0) {
     118             :           const double distance = -1.0 - packet.coordinates.get(d);
     119             :           if (max_distance < distance) {
     120             :             max_distance = distance;
     121             :             max_distance_direction = Direction<Dim>(d, Side::Lower);
     122             :           }
     123             :         }
     124             :         if (packet.coordinates.get(d) > 1.0) {
     125             :           const double distance = packet.coordinates.get(d) - 1.0;
     126             :           if (max_distance < distance) {
     127             :             max_distance = distance;
     128             :             max_distance_direction = Direction<Dim>(d, Side::Upper);
     129             :           }
     130             :         }
     131             :       }
     132             :       // If a packet should be moved along an edge / corner, we move
     133             :       // it into the direct neighbor it is effectively closest to
     134             :       // (in topological coordinates). This may need improvements.
     135             :       if (max_distance_direction != std::nullopt) {
     136             :         const size_t d = max_distance_direction.value().dimension();
     137             :         const Side side = max_distance_direction.value().side();
     138             :         packet.coordinates.get(d) += (side == Side::Lower) ? (2.0) : (-2.0);
     139             :         if (output.contains(max_distance_direction.value())) {
     140             :           output[max_distance_direction.value()].push_back(packet);
     141             :         }
     142             :         std::swap((*packets)[p], (*packets)[n_packets - 1]);
     143             :         packets->pop_back();
     144             :         p--;
     145             :         n_packets--;
     146             :       }
     147             :     }
     148             :     return output;
     149             :   }
     150             : };
     151             : 
     152             : /// Action responsible for the Send operation of ghost
     153             : /// zone communication for Monte-Carlo transport.
     154             : /// If CommStep == PreStep, this sends the fluid and
     155             : /// metric variables needed for evolution of MC packets.
     156             : /// If CommStep == PostStep, this sends packets that
     157             : /// have moved from one element to another.
     158             : /// The current code does not yet deal with data required
     159             : /// to calculate the backreaction on the fluid.
     160             : template <size_t Dim, bool LocalTimeStepping,
     161             :           Particles::MonteCarlo::CommunicationStep CommStep>
     162           1 : struct SendDataForMcCommunication {
     163           0 :   using inbox_tags =
     164             :       tmpl::list<Particles::MonteCarlo::McGhostZoneDataInboxTag<Dim, CommStep>>;
     165             : 
     166             :   template <typename DbTags, typename... InboxTags, typename ArrayIndex,
     167             :             typename ActionList, typename ParallelComponent,
     168             :             typename Metavariables>
     169           0 :   static Parallel::iterable_action_return_t apply(
     170             :       db::DataBox<DbTags>& box, tuples::TaggedTuple<InboxTags...>& /*inboxes*/,
     171             :       Parallel::GlobalCache<Metavariables>& cache,
     172             :       const ArrayIndex& /*array_index*/, const ActionList /*meta*/,
     173             :       const ParallelComponent* const /*meta*/) {
     174             :     static_assert(not LocalTimeStepping,
     175             :                   "Monte Carlo is not tested with local time stepping.");
     176             : 
     177             :     ASSERT(db::get<evolution::dg::subcell::Tags::ActiveGrid>(box) ==
     178             :                evolution::dg::subcell::ActiveGrid::Subcell,
     179             :            "The SendDataForReconstructionPreStep action in MC "
     180             :            "can only be called when Subcell is the active scheme.");
     181             :     db::mutate<Particles::MonteCarlo::Tags::McGhostZoneDataTag<Dim>>(
     182             :         [](const auto ghost_data_ptr) {
     183             :           // Clear the previous neighbor data and add current local data
     184             :           ghost_data_ptr->clear();
     185             :         },
     186             :         make_not_null(&box));
     187             : 
     188             :     auto& receiver_proxy =
     189             :         Parallel::get_parallel_component<ParallelComponent>(cache);
     190             :     const size_t ghost_zone_size = 1;
     191             : 
     192             :     const Element<Dim>& element = db::get<::domain::Tags::Element<Dim>>(box);
     193             :     const Mesh<Dim>& subcell_mesh =
     194             :         db::get<evolution::dg::subcell::Tags::Mesh<Dim>>(box);
     195             :     const TimeStepId& time_step_id = db::get<::Tags::TimeStepId>(box);
     196             : 
     197             :     // Fill volume data that should be fed to neighbor ghost zones
     198             :     DataVector volume_data_to_slice =
     199             :         CommStep == Particles::MonteCarlo::CommunicationStep::PreStep
     200             :             ? db::mutate_apply(GhostDataMutatorPreStep{}, make_not_null(&box))
     201             :             : DataVector{};
     202             :     const DirectionMap<Dim, DataVector> all_sliced_data =
     203             :         CommStep == Particles::MonteCarlo::CommunicationStep::PreStep
     204             :             ? evolution::dg::subcell::slice_data(
     205             :                   volume_data_to_slice, subcell_mesh.extents(), ghost_zone_size,
     206             :                   element.internal_boundaries(), 0,
     207             :                   db::get<evolution::dg::subcell::Tags::
     208             :                               InterpolatorsFromFdToNeighborFd<Dim>>(box))
     209             :             : DirectionMap<Dim, DataVector>{};
     210             : 
     211             :     const DirectionMap<Dim, std::vector<Particles::MonteCarlo::Packet>>
     212             :         all_packets_ghost_zone =
     213             :             CommStep == Particles::MonteCarlo::CommunicationStep::PostStep
     214             :                 ? db::mutate_apply(GhostDataMcPackets<Dim>{},
     215             :                                    make_not_null(&box))
     216             :                 : DirectionMap<Dim,
     217             :                                std::vector<Particles::MonteCarlo::Packet>>{};
     218             : 
     219             :     // TO DO:
     220             :     // Need to deal with coupling data, which is brought back from
     221             :     // neighbor's ghost zones to the processor with the live cell!
     222             : 
     223             :     for (const auto& [direction, neighbors_in_direction] :
     224             :          element.neighbors()) {
     225             :       const auto& orientation = neighbors_in_direction.orientation();
     226             :       const auto direction_from_neighbor = orientation(direction.opposite());
     227             :       for (const ElementId<Dim>& neighbor : neighbors_in_direction) {
     228             :         std::optional<std::vector<Particles::MonteCarlo::Packet>>
     229             :             packets_to_send = std::nullopt;
     230             :         DataVector subcell_data_to_send{};
     231             : 
     232             :         if (CommStep == Particles::MonteCarlo::CommunicationStep::PreStep) {
     233             :           const auto& sliced_data_in_direction = all_sliced_data.at(direction);
     234             :           subcell_data_to_send = DataVector{sliced_data_in_direction.size()};
     235             :           std::copy(sliced_data_in_direction.begin(),
     236             :                     sliced_data_in_direction.end(),
     237             :                     subcell_data_to_send.begin());
     238             :         }
     239             :         if (CommStep == Particles::MonteCarlo::CommunicationStep::PostStep) {
     240             :           packets_to_send = all_packets_ghost_zone.at(direction);
     241             :           if (packets_to_send.value().empty()) {
     242             :             packets_to_send = std::nullopt;
     243             :           }
     244             :         }
     245             : 
     246             :         McGhostZoneData<Dim> data{subcell_data_to_send, packets_to_send};
     247             : 
     248             :         Parallel::receive_data<
     249             :             Particles::MonteCarlo::McGhostZoneDataInboxTag<Dim, CommStep>>(
     250             :             receiver_proxy[neighbor], time_step_id,
     251             :             std::pair{DirectionalId<Dim>{direction_from_neighbor, element.id()},
     252             :                       std::move(data)});
     253             :       }
     254             :     }
     255             :     return {Parallel::AlgorithmExecution::Continue, std::nullopt};
     256             :   }
     257             : };
     258             : 
     259             : /// Action responsible for the Receive operation of ghost
     260             : /// zone communication for Monte-Carlo transport.
     261             : /// If CommStep == PreStep, this gets the fluid and
     262             : /// metric variables needed for evolution of MC packets.
     263             : /// If CommStep == PostStep, this gets packets that
     264             : /// have moved into the current element.
     265             : /// The current code does not yet deal with data required
     266             : /// to calculate the backreaction on the fluid.
     267             : template <size_t Dim, CommunicationStep CommStep>
     268           1 : struct ReceiveDataForMcCommunication {
     269             :   template <typename DbTags, typename... InboxTags, typename ArrayIndex,
     270             :             typename ActionList, typename ParallelComponent,
     271             :             typename Metavariables>
     272           0 :   static Parallel::iterable_action_return_t apply(
     273             :       db::DataBox<DbTags>& box, tuples::TaggedTuple<InboxTags...>& inboxes,
     274             :       const Parallel::GlobalCache<Metavariables>& /*cache*/,
     275             :       const ArrayIndex& /*array_index*/, const ActionList /*meta*/,
     276             :       const ParallelComponent* const /*meta*/) {
     277             :     const Element<Dim>& element = db::get<::domain::Tags::Element<Dim>>(box);
     278             :     const auto number_of_expected_messages = element.neighbors().size();
     279             :     if (UNLIKELY(number_of_expected_messages == 0)) {
     280             :       // We have no neighbors, so just continue without doing any work
     281             :       return {Parallel::AlgorithmExecution::Continue, std::nullopt};
     282             :     }
     283             : 
     284             :     const auto& current_time_step_id = db::get<::Tags::TimeStepId>(box);
     285             :     std::map<TimeStepId, DirectionalIdMap<
     286             :                              Dim, Particles::MonteCarlo::McGhostZoneData<Dim>>>&
     287             :         inbox = tuples::get<Particles::MonteCarlo::McGhostZoneDataInboxTag<
     288             :             Metavariables::volume_dim, CommStep>>(inboxes);
     289             :     const auto& received = inbox.find(current_time_step_id);
     290             :     // Check we have at least some data from correct time, and then check that
     291             :     // we have received all data
     292             :     if (received == inbox.end() or
     293             :         received->second.size() != number_of_expected_messages) {
     294             :       return {Parallel::AlgorithmExecution::Retry, std::nullopt};
     295             :     }
     296             : 
     297             :     // Now that we have received all the data, copy it over as needed.
     298             :     DirectionalIdMap<Dim, Particles::MonteCarlo::McGhostZoneData<Dim>>
     299             :         received_data = std::move(inbox[current_time_step_id]);
     300             :     inbox.erase(current_time_step_id);
     301             : 
     302             :     // Copy the received PreStep data in the MortarData container
     303             :     if (CommStep == Particles::MonteCarlo::CommunicationStep::PreStep) {
     304             :       db::mutate<Particles::MonteCarlo::Tags::MortarDataTag<Dim>>(
     305             :           [&element,
     306             :            &received_data](const gsl::not_null<MortarData<Dim>*> mortar_data) {
     307             :             for (const auto& [direction, neighbors_in_direction] :
     308             :                  element.neighbors()) {
     309             :               for (const auto& neighbor : neighbors_in_direction) {
     310             :                 DirectionalId<Dim> directional_element_id{direction, neighbor};
     311             :                 const DataVector& received_data_direction =
     312             :                     received_data[directional_element_id]
     313             :                         .ghost_zone_hydro_variables;
     314             :                 REQUIRE(received_data[directional_element_id]
     315             :                             .packets_entering_this_element == std::nullopt);
     316             :                 if (mortar_data->rest_mass_density[directional_element_id] ==
     317             :                     std::nullopt) {
     318             :                   continue;
     319             :                 }
     320             :                 const size_t mortar_data_size =
     321             :                     mortar_data->rest_mass_density[directional_element_id]
     322             :                         .value()
     323             :                         .size();
     324             :                 std::copy(received_data_direction.data(),
     325             :                           std::next(received_data_direction.data(),
     326             :                                     static_cast<int>(mortar_data_size)),
     327             :                           mortar_data->rest_mass_density[directional_element_id]
     328             :                               .value()
     329             :                               .data());
     330             :                 std::copy(std::next(received_data_direction.data(),
     331             :                                     static_cast<int>(mortar_data_size)),
     332             :                           std::next(received_data_direction.data(),
     333             :                                     static_cast<int>(mortar_data_size * 2)),
     334             :                           mortar_data->electron_fraction[directional_element_id]
     335             :                               .value()
     336             :                               .data());
     337             :                 std::copy(std::next(received_data_direction.data(),
     338             :                                     static_cast<int>(mortar_data_size * 2)),
     339             :                           std::next(received_data_direction.data(),
     340             :                                     static_cast<int>(mortar_data_size * 3)),
     341             :                           mortar_data->temperature[directional_element_id]
     342             :                               .value()
     343             :                               .data());
     344             :                 std::copy(std::next(received_data_direction.data(),
     345             :                                     static_cast<int>(mortar_data_size * 3)),
     346             :                           std::next(received_data_direction.data(),
     347             :                                     static_cast<int>(mortar_data_size * 4)),
     348             :                           mortar_data
     349             :                               ->cell_light_crossing_time[directional_element_id]
     350             :                               .value()
     351             :                               .data());
     352             :               }
     353             :             }
     354             :           },
     355             :           make_not_null(&box));
     356             :     } else {
     357             :       // TO DO: Deal with data coupling neutrinos back to fluid evolution
     358             :       db::mutate<Particles::MonteCarlo::Tags::PacketsOnElement>(
     359             :           [&element, &received_data](
     360             :               const gsl::not_null<std::vector<Particles::MonteCarlo::Packet>*>
     361             :                   packet_list) {
     362             :             for (const auto& [direction, neighbors_in_direction] :
     363             :                  element.neighbors()) {
     364             :               for (const auto& neighbor : neighbors_in_direction) {
     365             :                 DirectionalId<Dim> directional_element_id{direction, neighbor};
     366             :                 const std::optional<std::vector<Particles::MonteCarlo::Packet>>&
     367             :                     received_data_packets =
     368             :                         received_data[directional_element_id]
     369             :                             .packets_entering_this_element;
     370             :                 // Temporary: currently no data for coupling to the fluid
     371             :                 REQUIRE(received_data[directional_element_id]
     372             :                             .ghost_zone_hydro_variables.size() == 0);
     373             :                 if (received_data_packets == std::nullopt) {
     374             :                   continue;
     375             :                 } else {
     376             :                   const size_t n_packets = received_data_packets.value().size();
     377             :                   for (size_t p = 0; p < n_packets; p++) {
     378             :                     packet_list->push_back(received_data_packets.value()[p]);
     379             :                   }
     380             :                 }
     381             :               }
     382             :             }
     383             :           },
     384             :           make_not_null(&box));
     385             :     }
     386             : 
     387             :     return {Parallel::AlgorithmExecution::Continue, std::nullopt};
     388             :   }
     389             : };
     390             : 
     391             : }  // namespace Particles::MonteCarlo::Actions

Generated by: LCOV version 1.14