Line data Source code
1 1 : // Distributed under the MIT License. 2 : // See LICENSE.txt for details. 3 : 4 : /// \file 5 : /// Documents the `sgb` namespace 6 : 7 : #pragma once 8 : 9 : /*! 10 : * \ingroup EllipticSystemsGroup 11 : * \brief Items related to solving the sGB scalar equation 12 : * 13 : * The quasi-stationary scalar equation in sGB gravity 14 : * \begin{equation}\label{eq:sGB} 15 : * -\partial_i \left[ \left( \gamma^{ij} - \alpha^{-2} \beta^i \beta^j \right) 16 : * \partial_j \Psi \right] + \partial_j \Psi \left( \gamma^{ij} - \alpha^{-2} 17 : * \beta^i \beta^j \right) \left( \Gamma_i + \partial_i \ln \alpha \right) = 18 : * \ell^2 f' \left( \Psi \right) \mathcal{G} 19 : * \end{equation} 20 : * 21 : * is a nonlinear Poisson-type elliptic PDE for the scalar field $\Psi$. To 22 : * obtain this equation, one begins by considering the action: 23 : * 24 : * \begin{equation} 25 : * S\left[g_{ab}, \Psi \right] \equiv \int \, d^4 x \sqrt{-g} 26 : * \Big[ \dfrac{R}{2 \kappa } - \dfrac{1}{2} \nabla_{a} \Psi \nabla^{a} \Psi + 27 : * \ell^2 f(\Psi) \, \mathcal{G} \Big], 28 : * \end{equation} 29 : * 30 : * where $\mathcal{G} \equiv R_{abcd}R^{abcd} - 4 R_{ab}R^{ab} + R^2$. Varying 31 : * the action with respect to $\Psi$, one obtains the wave-like equation 32 : * 33 : * \begin{equation} 34 : * \Box \Psi = - \ell^2 f'(\Psi) \mathcal{G} 35 : * \end{equation} 36 : * 37 : * In the spirit of quasi-stationarity, we set $\partial_t \Psi = \partial_t^2 38 : * \Psi = \partial_t \alpha = \partial_t \beta^{i} = 0$, where $\alpha$ and 39 : * $\beta^i$ are the lapse and shift respectively. This yields ($\ref{eq:sGB}$), 40 : * with $\gamma^{ij}$ being the spatial metric, and $\Gamma_i$ its associated 41 : * contracted christoffel symbol of the second kind. 42 : * 43 : * Currently, we have implemented the coupling function 44 : * 45 : * \begin{equation} 46 : * \ell^2 f(\Psi) = \epsilon_2 \frac{\Psi^2}{8} + \epsilon_4 \frac{\Psi^4}{16} 47 : * \end{equation} 48 : * 49 : * Note that the principal part of the master equation will generically turn 50 : * singular at black hole horizon's for stationary initial data. Typically, this 51 : * requires a boundary condition ensuring regularity of the solution. However, 52 : * as detailed in \cite Nee2024bur, this is already enforced by the chosen 53 : * spectral decomposition, and so instead one should impose the DoNothing 54 : * boundary condition for excision surfaces within black hole apparent horizons. 55 : * 56 : * As is currently implemented, one must provide numeric data corresponding to 57 : * the full metric $g_{ab}$. All of this can be generated using SolveXcts, 58 : * with a glob for the volume files being specified in the 59 : * SolveScalarGaussBonnet input file. 60 : * 61 : * Specifically, one must ensure the following is in the provided volume file: 62 : * 63 : * - the conformal factor $\psi$, 64 : * - the spatial metric $\gamma_{ij}$, 65 : * - the lapse $\alpha$, 66 : * - the shift $\beta^i$, 67 : * - the shift excess $\beta_{exc}^i$, 68 : * - the extrinsic curvature $K^{ij}$, and 69 : * - the inverse conformal metric $\bar{\gamma}^{ij}$. 70 : * 71 : * One must also ensure that the Background specified in the input file is the 72 : * same one that was used in SolveXcts. This is checked using 73 : * $\bar{\gamma}^{ij}$. 74 : */ 75 : namespace sgb {}