Line data Source code
1 0 : // Distributed under the MIT License. 2 : // See LICENSE.txt for details. 3 : 4 : #pragma once 5 : 6 : #include <cstddef> 7 : #include <map> 8 : #include <optional> 9 : #include <unordered_map> 10 : #include <vector> 11 : 12 : #include "DataStructures/Tensor/TypeAliases.hpp" 13 : #include "Domain/BlockLogicalCoordinates.hpp" 14 : #include "Domain/Structure/ElementSearchTree.hpp" 15 : 16 : /// \cond 17 : namespace domain { 18 : class BlockId; 19 : } // namespace domain 20 : class DataVector; 21 : template <size_t VolumeDim> 22 : class ElementId; 23 : template <typename IdType, typename DataType> 24 : class IdPair; 25 : /// \endcond 26 : 27 : /*! 28 : * \brief Map block logical coordinates to element logical coordinates 29 : * 30 : * If the point is outside the element, returns std::nullopt. Otherwise, returns 31 : * the element logical coordinates of the point. 32 : * 33 : * Points on the element boundary are considered to be in the element and will 34 : * have element logical coordinates of -1 or 1. See the other function overload 35 : * for handling multiple points and disambiguating points on shared element 36 : * boundaries. 37 : */ 38 : template <size_t Dim> 39 : std::optional<tnsr::I<double, Dim, Frame::ElementLogical>> 40 1 : element_logical_coordinates( 41 : const tnsr::I<double, Dim, Frame::BlockLogical>& x_block_logical, 42 : const ElementId<Dim>& element_id); 43 : 44 : /*! 45 : * \brief Map block logical coordinates to element logical coordinates using an 46 : * indexed set of elements 47 : * 48 : * The indexing is done by the `domain::index_element_ids` function, which 49 : * places element IDs into a search tree for fast lookup. If the point is on a 50 : * shared element boundary then no guarantee is made which of the abutting 51 : * element IDs is returned (the returned element ID is deterministic but depends 52 : * on the order in which the elements were inserted into the search tree). See 53 : * the other function overload for handling multiple points and disambiguating 54 : * points on shared element boundaries. 55 : * 56 : * \param block_logical_coords the block logical coordinates of the point 57 : * \param search_tree the result of `domain::index_element_ids` 58 : */ 59 : template <size_t Dim> 60 : std::optional< 61 : std::pair<ElementId<Dim>, tnsr::I<double, Dim, Frame::ElementLogical>>> 62 1 : element_logical_coordinates( 63 : const IdPair<domain::BlockId, tnsr::I<double, Dim, Frame::BlockLogical>>& 64 : block_logical_coords, 65 : const std::map<size_t, domain::ElementSearchTree<Dim>>& search_tree); 66 : 67 : /// \ingroup ComputationalDomainGroup 68 : /// 69 : /// Holds element logical coordinates of an arbitrary set of points on 70 : /// a single `Element`. The arbitrary set of points is assumed to be 71 : /// a subset of a larger set of points spanning multiple `Element`s, 72 : /// and this class holds `offsets` that index into that larger set of 73 : /// points. 74 : /// 75 : /// \details `offsets.size()` is the same as the size of the `DataVector` 76 : /// inside `element_logical_coords`. 77 : /// 78 : /// This is used during the process of interpolating volume quantities 79 : /// on the `Elements` (e.g. the spatial metric) onto an arbitrary set 80 : /// of points (e.g. the points on an apparent horizon or a 81 : /// wave-extraction surface) expressed in some frame. Here is an 82 : /// outline of how this interpolation proceeds, and where 83 : /// `element_logical_coordinates` and `block_logical_coordinates` fit 84 : /// into the picture: 85 : /// 86 : /// Assume some component (e.g. HorizonA) has a `Tensor<DataVector>` 87 : /// of target coordinate points in some coordinate frame. The goal is 88 : /// to determine the `Element` and logical coordinates of each point, 89 : /// have each `Element` interpolate volume data onto the points 90 : /// contained inside that `Element`, and send the interpolated data 91 : /// back to the component. The first step of this process is to 92 : /// determine the block_id and block_logical_coordinates of each 93 : /// point; this is done by the component (e.g. HorizonA), which calls 94 : /// the function `block_logical_coordinates` on its full set of target 95 : /// points. The result of `block_logical_coordinates` is then 96 : /// communicated to the members of a NodeGroup component 97 : /// (e.g. HorizonManager). Each node of the NodeGroup then calls 98 : /// `element_logical_coordinates`, which returns a map of `ElementId` 99 : /// to `ElementLogicalCoordHolder` for all the `Element`s on that node 100 : /// that contain one or more of the target points. The NodeGroup 101 : /// (which already has received the volume data from the `Elements` on 102 : /// that node), interpolates the volume data to the element logical 103 : /// coordinates for all of these `ElementId`s. The `offsets` in the 104 : /// `ElementLogicalCoordHolder` are the indices into the `DataVectors` 105 : /// of the original target coordinates and will be used to assemble 106 : /// the interpolated data into `Tensor<DataVector>`s that have the 107 : /// same ordering as the original target coordinates. The NodeGroups 108 : /// perform a reduction to get the data back to the original 109 : /// component. 110 : template <size_t Dim> 111 1 : struct ElementLogicalCoordHolder { 112 0 : tnsr::I<DataVector, Dim, Frame::ElementLogical> element_logical_coords; 113 0 : std::vector<size_t> offsets; 114 : }; 115 : 116 : /// \ingroup ComputationalDomainGroup 117 : /// 118 : /// Given a set of points in block logical coordinates and their 119 : /// `BlockIds`, as returned from the function 120 : /// `block_logical_coordinates`, determines which `Element`s in a list 121 : /// of `ElementId`s contains each point, and determines the element 122 : /// logical coordinates of each point. 123 : /// 124 : /// \details Returns a std::unordered_map from `ElementId`s to 125 : /// `ElementLogicalCoordHolder`s. 126 : /// It is expected that only a subset of the points will be found 127 : /// in the given `Element`s. 128 : /// Boundary points: If a point is on the boundary of an Element, it is 129 : /// considered contained in that Element only if it is on the lower bound 130 : /// of the Element, or if it is on the upper bound of the element and that 131 : /// upper bound coincides with the upper bound of the containing Block. 132 : /// This means that each boundary point is contained in one and only one 133 : /// Element. We assume that the input block_coord_holders associates 134 : /// a point on a Block boundary with only a single Block, the one with 135 : /// the smaller BlockId, which is always the lower-bounding Block. 136 : /// 137 : /// \code 138 : /// <--- Block 0 ---> <--- Block 1 ---> 139 : /// | | | | | 140 : /// P_0 E0 P_1 E1 P_2 E2 P_3 E3 P_4 141 : /// | | | | | 142 : /// 143 : /// For example, the above 1D diagram shows four Elements labeled E0 144 : /// through E3, and five boundary points labeled P_0 through P_4 (where 145 : /// P_0 and P_4 are external boundaries). There are two Blocks. This 146 : /// algorithm assigns each boundary point to one and only one Element as 147 : /// follows: 148 : /// P_0 -> E0 149 : /// P_1 -> E1 150 : /// P_2 -> E1 (Note: block_coord_holders includes P_2 only in Block 0) 151 : /// P_3 -> E3 152 : /// P_4 -> E3 153 : /// \endcode 154 : template <size_t Dim> 155 1 : auto element_logical_coordinates( 156 : const std::vector<ElementId<Dim>>& element_ids, 157 : const std::vector<BlockLogicalCoords<Dim>>& block_coord_holders) 158 : -> std::unordered_map<ElementId<Dim>, ElementLogicalCoordHolder<Dim>>;