SpECTRE Documentation Coverage Report
Current view: top level - Domain/CoordinateMaps - FlatOffsetWedge.hpp Hit Total Coverage
Commit: 1f2210958b4f38fdc0400907ee7c6d5af5111418 Lines: 4 21 19.0 %
Date: 2025-12-05 05:03:31
Legend: Lines: hit not hit

          Line data    Source code
       1           1 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : /// \file
       5             : /// Defines the class FlattOffsetWedge.
       6             : 
       7             : #pragma once
       8             : 
       9             : #include <array>
      10             : #include <cstddef>
      11             : #include <limits>
      12             : #include <optional>
      13             : 
      14             : #include "DataStructures/Tensor/TypeAliases.hpp"
      15             : #include "Utilities/TypeTraits/RemoveReferenceWrapper.hpp"
      16             : 
      17             : /// \cond
      18             : namespace PUP {
      19             : class er;
      20             : }  // namespace PUP
      21             : /// \endcond
      22             : 
      23             : namespace domain::CoordinateMaps {
      24             : 
      25             : /*!
      26             :  * \ingroup CoordinateMapsGroup
      27             :  *
      28             :  * \brief Map from a cube to a volume that connects three planes and
      29             :  * a portion of one spherical surface.
      30             :  *
      31             :  * \image html FlatOffsetWedge.svg "Two slices through a FlatOffsetWedge."
      32             :  *
      33             :  * \details A cube is mapped to the volume shown in the figure.
      34             :  *
      35             :  * A $y=0$ slice through the volume is shown in the left
      36             :  * panel of the figure, and a $x=$const slice through the volume is shown
      37             :  * in the right panel of the figure.
      38             :  *
      39             :  * The upper-$z$ face of the volume is a portion of a spherical surface
      40             :  * of radius $R$ centered about point $C$ in the figure, which is along
      41             :  * the $x$-axis a distance $D$ from the origin (point $O$ in the figure).
      42             :  * The lower-$z$ face of the volume is a two-dimensional rectangle of
      43             :  * constant $z$, located a distance $L$ above the origin.
      44             :  * This rectangle extends from
      45             :  * $0 \leq x \leq D$ in the $x$ direction, and from
      46             :  * $-L \leq y \leq+L$ in the $y$ direction.
      47             :  *
      48             :  * The lower-$x$ face of the volume is a portion of the plane at constant
      49             :  * $x=0$, and the upper-$x$ face of the volume is a portion of the plane
      50             :  * at constant $x=D$. See the $x$ extents of the left panel of the
      51             :  * figure.
      52             :  *
      53             :  * Every constant-$x$ cross section of the volume looks like the right panel
      54             :  * of the figure: it is a two-dimensional wedge with 45 degree
      55             :  * opening angle and a base of
      56             :  * width $2L$.  The outer radius of this wedge varies with $x$ (this radius
      57             :  * is $R$ at $x=D$ and $\sqrt{R^2-D^2}$ at $x=0$).
      58             :  *
      59             :  * ### Restrictions
      60             :  *
      61             :  * We require $D^2 + L^2 < R^2$ or else the lower-$x$ face of the mapped
      62             :  * volume lies outside of the sphere of radius $R$.  This implies $L<R$
      63             :  * and $D<R$.
      64             :  * However, the condition that the upper-$z$ and lower-$z$ surface don't touch
      65             :  * each other at the $\xi=-1$, $\eta=\pm 1$ corners is more stringent:
      66             :  * $D^2 + 2L^2 < R^2$.  This implies that $L<R/\sqrt{2}$.
      67             :  *
      68             :  * ## Equations for the map
      69             :  * Given our cube coordinates $\xi,\eta,\zeta$, each taking on values from
      70             :  * $-1$ to $+1$, we can derive the formulas for the map.
      71             :  *
      72             :  * Define
      73             :  * \begin{equation}
      74             :  *    q \equiv \frac{D}{2R}.
      75             :  * \end{equation}
      76             :  *
      77             :  * Notice that $q<1/2$, because of the restriction $D<R$.
      78             :  *
      79             :  * First, note that $x$ is a function of $\xi$ only, for all points in
      80             :  * the cube:
      81             :  * \begin{align}
      82             :  *  x(\xi,\eta,\zeta) &= q R (\xi+1).
      83             :  * \end{align}
      84             :  *
      85             :  * ### Surface map for bottom and top surfaces
      86             :  * The $y$ and $z$ coordinates for the mapped $\zeta=-1$ surface are
      87             :  * \begin{align}
      88             :  *   \begin{bmatrix}
      89             :  *      y(\xi,\eta,-1)\\
      90             :  *      z(\xi,\eta,-1)
      91             :  *   \end{bmatrix} = L
      92             :  *   \begin{bmatrix}
      93             :  *      \eta\\
      94             :  *      1
      95             :  *   \end{bmatrix}.
      96             :  * \end{align}
      97             :  *
      98             :  * The $y$ and $z$ coordinates of the top surface,
      99             :  * $\zeta=+1$, of the volume are given by
     100             :  * \begin{align}
     101             :  *   \begin{bmatrix}
     102             :  *      y(\xi,\eta,+1)\\
     103             :  *      z(\xi,\eta,+1)
     104             :  *   \end{bmatrix} =
     105             :  *     \frac{R}{\sqrt{1+\eta^2}}
     106             :  *              \sqrt{1-q^2(\xi-1)^2}
     107             :  *   \begin{bmatrix}
     108             :  *      \eta \\
     109             :  *      1
     110             :  *   \end{bmatrix}.
     111             :  * \end{align}
     112             :  *
     113             :  * ### Full volume map
     114             :  * Adding the $\zeta$ dependence by linear interpolation gives us
     115             :  * the full volume map for the $y$ and $z$ coordinates:
     116             :  *
     117             :  * \begin{align}
     118             :  *   \begin{bmatrix}
     119             :  *      y(\xi,\eta,\zeta)\\
     120             :  *      z(\xi,\eta,\zeta)
     121             :  *   \end{bmatrix} =
     122             :  *      \left[L \frac{1-\zeta}{2}
     123             :  *        + \frac{1+\zeta}{2}
     124             :  *          \frac{R}{\sqrt{1+\eta^2}}
     125             :  *           \sqrt{1-q^2(\xi-1)^2}\right]
     126             :  *   \begin{bmatrix}
     127             :  *      \eta \\
     128             :  *      1
     129             :  *   \end{bmatrix}.
     130             :  * \end{align}
     131             :  *
     132             :  * ## Inverse
     133             :  *
     134             :  * The map can be inverted analytically:
     135             :  *
     136             :  * \begin{align}
     137             :  *    \xi   &= \frac{x}{qR}-1\\
     138             :  *    \eta  &= \frac{y}{z}\\
     139             :  *    \zeta &= \frac{2z - L - P}{P-L},
     140             :  *              \label{eq:zetaFromxyz}
     141             :  * \end{align}
     142             :  * where
     143             :  * \begin{align}
     144             :  *   P &\equiv R\frac{\sqrt{1-(x-D)^2/R^2}}{\sqrt{1+y^2/z^2}}\\
     145             :  *     &= R\frac{\sqrt{1-q^2(\xi-1)^2}}{\sqrt{1+\eta^2}}.
     146             :  *              \label{eq:Pdefinition}
     147             :  * \end{align}
     148             :  *
     149             :  * It is easy to determine whether a point $(x,y,z)$ lies within the volume:
     150             :  * First compute $\xi$ and $\eta$ and check that they are both in $[-1,1]$.
     151             :  * If so, then the arguments of the square roots in
     152             :  * Eq. ($\ref{eq:Pdefinition}$) are guaranteed positive, and the denominator
     153             :  * of Eq. ($\ref{eq:zetaFromxyz}$) is guaranteed positive
     154             :  * by our condition $R^2>2L^2+D^2$,
     155             :  * so it is straightforward to
     156             :  * compute $\zeta$ and then check if it is in $[-1,1]$.
     157             :  *
     158             :  * ## Jacobian
     159             :  *
     160             :  * Straightforward differentiation gives
     161             :  *
     162             :  * \begin{align}
     163             :  *    \frac{\partial x}{\partial \xi}   &= qR\\
     164             :  *    \frac{\partial x}{\partial \eta}   &= 0\\
     165             :  *    \frac{\partial x}{\partial \zeta}   &= 0,
     166             :  * \end{align}
     167             :  *
     168             :  * \begin{align}
     169             :  *   \partial_\zeta \begin{bmatrix}
     170             :  *      y\\
     171             :  *      z
     172             :  *   \end{bmatrix} &= \frac{1}{2}
     173             :  *    \left[\frac{R}{\sqrt{1+\eta^2}}\sqrt{1-q^2(\xi-1)^2}
     174             :  *    -L\right]
     175             :  *   \begin{bmatrix}
     176             :  *      \eta \\
     177             :  *      1
     178             :  *   \end{bmatrix}, \\
     179             :  *   \partial_\xi \begin{bmatrix}
     180             :  *      y\\
     181             :  *      z
     182             :  *   \end{bmatrix} &=
     183             :  *    \left[\frac{Rq^2 (1+\zeta)(1-\xi)}{2\sqrt{1+\eta^2}}
     184             :  *    \left(1-q^2(\xi-1)^2\right)^{-1/2}\right]
     185             :  *   \begin{bmatrix}
     186             :  *      \eta \\
     187             :  *      1
     188             :  *   \end{bmatrix}, \\
     189             :  *   \partial_\eta \begin{bmatrix}
     190             :  *      y\\
     191             :  *      z
     192             :  *   \end{bmatrix} &=
     193             :  *       -\left[\frac{R\eta(1+\zeta)}{2(1+\eta^2)^{3/2}}
     194             :  *        \sqrt{1-q^2(\xi-1)^2}\right]
     195             :  *   \begin{bmatrix}
     196             :  *      \eta \\
     197             :  *      1
     198             :  *   \end{bmatrix}+
     199             :  *   \begin{bmatrix}
     200             :  *      z \\
     201             :  *      0
     202             :  *   \end{bmatrix}.
     203             :  * \end{align}
     204             :  *
     205             :  * ## Inverse Jacobian
     206             :  *
     207             :  * Let
     208             :  * \begin{align}
     209             :  *   \Xi &\equiv P\frac{1+\zeta}{P-L}.
     210             :  * \end{align}
     211             :  * Then
     212             :  * \begin{align}
     213             :  *    \frac{\partial \zeta}{\partial x}  &=
     214             :  *        \Xi q\frac{\xi-1}{R\sqrt{1-q^2(\xi-1)^2}},\\
     215             :  *    \frac{\partial \zeta}{\partial y}  &=
     216             :  *        \Xi \frac{\eta}{z\sqrt{1+\eta^2}},\\
     217             :  *    \frac{\partial \zeta}{\partial z}  &=
     218             :  *        -\Xi \eta\frac{\eta}{z\sqrt{1+\eta^2}}
     219             :  *     +\frac{2}{P-L},\\
     220             :  *    \frac{\partial \xi}{\partial x}   &= \frac{1}{qR}\\
     221             :  *    \frac{\partial \xi}{\partial y}   &= 0\\
     222             :  *    \frac{\partial \xi}{\partial z}   &= 0\\
     223             :  *    \frac{\partial \eta}{\partial x}  &= 0\\
     224             :  *    \frac{\partial \eta}{\partial y}  &= \frac{1}{z}\\
     225             :  *    \frac{\partial \eta}{\partial z}  &= -\frac{\eta}{z}.
     226             :  * \end{align}
     227             :  *
     228             :  */
     229           1 : class FlatOffsetWedge {
     230             :  public:
     231           0 :   static constexpr size_t dim = 3;
     232             :   /*!
     233             :    * \brief Constructs a FlatOffsetWedge.
     234             :    *
     235             :    * \param lower_face_y_half_width The half-width $L$ of the lower face in
     236             :    * the $y$ direction.
     237             :    * \param lower_face_x_width The width $D$ of the lower face in
     238             :    * the $x$ direction.
     239             :    * \param outer_radius The outer radius $R$.
     240             :    */
     241           1 :   FlatOffsetWedge(double lower_face_y_half_width, double lower_face_x_width,
     242             :                   double outer_radius);
     243             : 
     244           0 :   FlatOffsetWedge() = default;
     245           0 :   ~FlatOffsetWedge() = default;
     246           0 :   FlatOffsetWedge(FlatOffsetWedge&&) = default;
     247           0 :   FlatOffsetWedge(const FlatOffsetWedge&) = default;
     248           0 :   FlatOffsetWedge& operator=(const FlatOffsetWedge&) = default;
     249           0 :   FlatOffsetWedge& operator=(FlatOffsetWedge&&) = default;
     250             : 
     251             :   template <typename T>
     252           0 :   std::array<tt::remove_cvref_wrap_t<T>, 3> operator()(
     253             :       const std::array<T, 3>& source_coords) const;
     254             : 
     255             :   /// The inverse function is only callable with doubles because the inverse
     256             :   /// might fail if called for a point out of range, and it is unclear
     257             :   /// what should happen if the inverse were to succeed for some points in a
     258             :   /// DataVector but fail for other points.
     259           1 :   std::optional<std::array<double, 3>> inverse(
     260             :       const std::array<double, 3>& target_coords) const;
     261             : 
     262             :   template <typename T>
     263           0 :   tnsr::Ij<tt::remove_cvref_wrap_t<T>, 3, Frame::NoFrame> jacobian(
     264             :       const std::array<T, 3>& source_coords) const;
     265             : 
     266             :   template <typename T>
     267           0 :   tnsr::Ij<tt::remove_cvref_wrap_t<T>, 3, Frame::NoFrame> inv_jacobian(
     268             :       const std::array<T, 3>& source_coords) const;
     269             : 
     270             :   // clang-tidy: google runtime references
     271           0 :   void pup(PUP::er& p);  // NOLINT
     272             : 
     273           0 :   static bool is_identity() { return false; }
     274             : 
     275             :  private:
     276           0 :   friend bool operator==(const FlatOffsetWedge& lhs,
     277             :                          const FlatOffsetWedge& rhs);
     278           0 :   double lower_face_y_half_width_{std::numeric_limits<double>::signaling_NaN()};
     279           0 :   double lower_face_x_width_{std::numeric_limits<double>::signaling_NaN()};
     280           0 :   double outer_radius_{std::numeric_limits<double>::signaling_NaN()};
     281             : };
     282             : 
     283           0 : bool operator!=(const FlatOffsetWedge& lhs, const FlatOffsetWedge& rhs);
     284             : }  // namespace domain::CoordinateMaps

Generated by: LCOV version 1.14