SpECTRE Documentation Coverage Report
Current view: top level - Domain/CoordinateMaps - FlatOffsetSphericalWedge.hpp Hit Total Coverage
Commit: 1f2210958b4f38fdc0400907ee7c6d5af5111418 Lines: 4 21 19.0 %
Date: 2025-12-05 05:03:31
Legend: Lines: hit not hit

          Line data    Source code
       1           1 : // Distributed under the MIT License.
       2             : // See LICENSE.txt for details.
       3             : 
       4             : /// \file
       5             : /// Defines the class FlatOffsetSphericalWedge.
       6             : 
       7             : #pragma once
       8             : 
       9             : #include <array>
      10             : #include <cstddef>
      11             : #include <limits>
      12             : #include <optional>
      13             : 
      14             : #include "DataStructures/Tensor/TypeAliases.hpp"
      15             : #include "Utilities/TypeTraits/RemoveReferenceWrapper.hpp"
      16             : 
      17             : /// \cond
      18             : namespace PUP {
      19             : class er;
      20             : }  // namespace PUP
      21             : /// \endcond
      22             : 
      23             : namespace domain::CoordinateMaps {
      24             : 
      25             : /*!
      26             :  * \ingroup CoordinateMapsGroup
      27             :  *
      28             :  * \brief Map from a cube to a volume that connects four planes and
      29             :  * portions of two spherical surfaces.
      30             :  *
      31             :  * \image html FlatOffsetSphericalWedge.svg "Slices of FlatOffsetSphericalWedge"
      32             :  *
      33             :  * \details A cube is mapped to the volume shown in the figure.
      34             :  *
      35             :  * A $y=0$ slice through the volume is shown in the left
      36             :  * panel of the figure, and a $x=$const slice through the volume is shown
      37             :  * in the right panel of the figure.
      38             :  *
      39             :  * The lower-$z$ face of the volume is a portion of a spherical surface
      40             :  * of radius $R_1$ centered about point $C$ in the figure, which is along
      41             :  * the $x$-axis a distance $D$ from the origin (point $O$ in the figure).
      42             :  * The upper-$z$ face of the volume is a portion of a spherical surface
      43             :  * of radius $R_2$ centered about the origin.
      44             :  *
      45             :  * The lower-$x$ face of the volume is a portion of the plane at constant
      46             :  * $x=0$, and the upper-$x$ face of the volume is a portion of the plane
      47             :  * at constant $x=D$. See the $x$ extents of the left panel of the
      48             :  * figure.
      49             :  *
      50             :  * Every constant-$x$ cross section of the volume looks like the right
      51             :  * panel of the figure: it is a two-dimensional wedge with 45 degree
      52             :  * opening angle.  Both the inner and outer radii of this wedge vary
      53             :  * with $x$: The inner radius of the wedge is $R_1$ at $x=D$ and
      54             :  * $\sqrt{R_1^2-D^2}$ at $x=0$, and the outer radius of the wedge is
      55             :  * $R_2$ at $x=0$ and $\sqrt{R_2^2-D^2}$ at $x=D$.
      56             :  *
      57             :  * ### Relation to FlatOffsetWedge
      58             :  *
      59             :  * The lower-$z$ face of this FlatOffsetSphericalWedge is the same as
      60             :  * the upper-$z$ face of the similar map FlatOffsetWedge; Blocks using
      61             :  * these two maps are meant to abut at this surface.  The parameter
      62             :  * $D$ means the same thing for the two maps, and the parameter $R$ in
      63             :  * FlatOffsetWedge is the same as what we call $R_1$ here.
      64             :  * For abutting blocks, the corresponding parameters of the two maps should
      65             :  * be equal, and both maps should have the same origin.
      66             :  *
      67             :  * The formulas below will be similar to those of the FlatOffsetWedge map,
      68             :  * but slightly more complicated.
      69             :  *
      70             :  * ### Restrictions
      71             :  *
      72             :  * We require $D<R_1$ or else the lower-$x$ face of the mapped
      73             :  * volume lies outside of the sphere of radius $R_1$.
      74             :  * We also require that $R_2^2 > R_1^2+D^2$ or else the outer sphere
      75             :  * and inner sphere will intersect at the upper-$x$ face and the map
      76             :  * will be singular.
      77             :  *
      78             :  * ## Equations for the map
      79             :  * Given our cube coordinates $\xi,\eta,\zeta$, each taking on values from
      80             :  * $-1$ to $+1$, we can derive the formulas for the map.
      81             :  *
      82             :  * Define
      83             :  * \begin{align}
      84             :  *    q &\equiv \frac{D}{2R_1},\\
      85             :  *    v &\equiv \frac{R_1}{R_2}.
      86             :  * \end{align}
      87             :  *
      88             :  * Notice that $q<1/2$, because of the restriction $D<R_1$.  Also we
      89             :  * must have $v < \left(1+4q^2\right)^{-1/2}$ because of the
      90             :  * restriction $R_2^2 > R_1^2+D^2$.
      91             :  *
      92             :  * Note that $x$ is a function of $\xi$ only, for all points in the volume:
      93             :  * \begin{align}
      94             :  *  x(\xi,\eta,\zeta) &= q R (\xi+1).
      95             :  * \end{align}
      96             :  *
      97             :  * ### Surface map for bottom and top surfaces
      98             :  * The $y$ and $z$ coordinates of the bottom surface,
      99             :  * $\zeta=-1$, of the volume are given by
     100             :  * \begin{align}
     101             :  *   \begin{bmatrix}
     102             :  *      y(\xi,\eta,+1)\\
     103             :  *      z(\xi,\eta,+1)
     104             :  *   \end{bmatrix} =
     105             :  *     \frac{R_1}{\sqrt{1+\eta^2}}
     106             :  *               \sqrt{1-q^2(\xi-1)^2}
     107             :  *   \begin{bmatrix}
     108             :  *      \eta \\
     109             :  *      1
     110             :  *   \end{bmatrix}.
     111             :  * \end{align}
     112             :  * This is the same formula as for the upper face of the similar
     113             :  * FlatOffsetWedge map.
     114             :  *
     115             :  * The $y$ and $z$ coordinates for the mapped $\zeta=+1$ surface are
     116             :  * \begin{align}
     117             :  *   \begin{bmatrix}
     118             :  *      y(\xi,\eta,+1)\\
     119             :  *      z(\xi,\eta,+1)
     120             :  *   \end{bmatrix} =
     121             :  *     \frac{R_2}{\sqrt{1+\eta^2}}
     122             :  *              \sqrt{1-v^2q^2(\xi+1)^2}
     123             :  *   \begin{bmatrix}
     124             :  *      \eta \\
     125             :  *      1
     126             :  *   \end{bmatrix}.
     127             :  * \end{align}
     128             :  * Because of the above restrictions on $v$ and $q$, and because $\xi$ and
     129             :  * $\eta$ range between $-1$ and $+1$, the arguments of the square
     130             :  * roots above are always positive.
     131             :  *
     132             :  * ### Full volume map
     133             :  * Adding the $\zeta$ dependence by linear interpolation gives us
     134             :  * the full volume map for the $y$ and $z$ coordinates:
     135             :  *
     136             :  * \begin{align}
     137             :  *   \begin{bmatrix}
     138             :  *      y(\xi,\eta,\zeta)\\
     139             :  *      z(\xi,\eta,\zeta)
     140             :  *   \end{bmatrix} =
     141             :  *      \left[\frac{1+\zeta}{2}
     142             :  *        \frac{R_2}{\sqrt{1+\eta^2}}
     143             :  *                   \sqrt{1-v^2q^2(\xi+1)^2}
     144             :  *        + \frac{1-\zeta}{2}
     145             :  *          \frac{R_1}{\sqrt{1+\eta^2}}
     146             :  *           \sqrt{1-q^2(\xi-1)^2}\right]
     147             :  *   \begin{bmatrix}
     148             :  *      \eta \\
     149             :  *      1
     150             :  *   \end{bmatrix}.
     151             :  * \end{align}
     152             :  *
     153             :  * ## Inverse
     154             :  *
     155             :  * The map can be inverted analytically:
     156             :  *
     157             :  * \begin{align}
     158             :  *    \xi   &= \frac{x}{qR}-1\\
     159             :  *    \eta  &= \frac{y}{z}\\
     160             :  *    \zeta &= \frac{2z - W - P}{W-P},
     161             :  *              \label{eq:zetaFromxyz}
     162             :  * \end{align}
     163             :  * where
     164             :  * \begin{align}
     165             :  *   P &\equiv R_1\frac{\sqrt{1-(x-D)^2/R_1^2}}{\sqrt{1+y^2/z^2}}\\
     166             :  *     &= R_1\frac{\sqrt{1-q^2(\xi-1)^2}}{\sqrt{1+\eta^2}},
     167             :  *              \label{eq:Pdefinition} \\
     168             :  *   W &\equiv R_2\frac{\sqrt{1-x^2/R_2^2}}{\sqrt{1+y^2/z^2}}\\
     169             :  *     &= R_2\frac{\sqrt{1-v^2q^2(\xi+1)^2}}{\sqrt{1+\eta^2}}.
     170             :  *              \label{eq:Wdefinition}
     171             :  * \end{align}
     172             :  *
     173             :  * It is easy to determine whether a point $(x,y,z)$ lies within the volume:
     174             :  * First compute $\xi$ and $\eta$ and check that they are both in $[-1,1]$.
     175             :  * If so, then the arguments of the square roots in
     176             :  * Eq. ($\ref{eq:Pdefinition}$) and Eq. ($\ref{eq:Wdefinition}$) are
     177             :  * guaranteed positive, and the denominator
     178             :  * of Eq. ($\ref{eq:zetaFromxyz}$) is guaranteed positive
     179             :  * by our condition $v < 1/\sqrt{1+4q^2}$.
     180             :  * Then it is straightforward to
     181             :  * compute $\zeta$ and then check if it is in $[-1,1]$.
     182             :  *
     183             :  * ## Jacobian
     184             :  *
     185             :  * Straightforward differentiation gives
     186             :  *
     187             :  * \begin{align}
     188             :  *    \frac{\partial x}{\partial \xi}   &= qR_1,\\
     189             :  *    \frac{\partial x}{\partial \eta}   &= 0,\\
     190             :  *    \frac{\partial x}{\partial \zeta}   &= 0,\\
     191             :  *   \partial_\zeta \begin{bmatrix}
     192             :  *      y\\
     193             :  *      z
     194             :  *   \end{bmatrix} &= \frac{W-P}{2}
     195             :  *   \begin{bmatrix}
     196             :  *      \eta \\
     197             :  *      1
     198             :  *   \end{bmatrix}, \\
     199             :  *   \partial_\xi \begin{bmatrix}
     200             :  *      y\\
     201             :  *      z
     202             :  *   \end{bmatrix} &=
     203             :  *    \frac{q^2}{2}\left[
     204             :  *    P\frac{(1-\zeta)(1-\xi)}{1-q^2(1-\xi)^2}
     205             :  *    -W\frac{v^2(1+\zeta)(1+\xi)}{1-v^2q^2(1+\xi)^2}
     206             :  *    \right]
     207             :  *   \begin{bmatrix}
     208             :  *      \eta \\
     209             :  *      1
     210             :  *   \end{bmatrix}, \\
     211             :  *   \partial_\eta \begin{bmatrix}
     212             :  *      y\\
     213             :  *      z
     214             :  *   \end{bmatrix} &=
     215             :  *       -\frac{\eta}{2(1+\eta^2)}\left[
     216             :  *        W(1+\zeta)
     217             :  *       +P(1-\zeta)\right]
     218             :  *   \begin{bmatrix}
     219             :  *      \eta \\
     220             :  *      1
     221             :  *   \end{bmatrix}+
     222             :  *   \begin{bmatrix}
     223             :  *      z \\
     224             :  *      0
     225             :  *   \end{bmatrix}.
     226             :  * \end{align}
     227             :  *
     228             :  * Although it is straightforward to construct the inverse jacobian
     229             :  * analytically, for now we compute the inverse jacobian by numerically taking
     230             :  * the matrix inverse of the jacobian.
     231             :  *
     232             :  */
     233           1 : class FlatOffsetSphericalWedge {
     234             :  public:
     235           0 :   static constexpr size_t dim = 3;
     236             :   /*!
     237             :    * \brief Constructs a FlatOffsetSphericalWedge.
     238             :    *
     239             :    * \param lower_face_x_width The width $D$ of the lower face in
     240             :    * the $x$ direction.
     241             :    * \param inner_radius The inner radius $R_1$.
     242             :    * \param outer_radius The outer radius $R_2$.
     243             :    */
     244           1 :   FlatOffsetSphericalWedge(double lower_face_x_width, double inner_radius,
     245             :                            double outer_radius);
     246             : 
     247           0 :   FlatOffsetSphericalWedge() = default;
     248           0 :   ~FlatOffsetSphericalWedge() = default;
     249           0 :   FlatOffsetSphericalWedge(FlatOffsetSphericalWedge&&) = default;
     250           0 :   FlatOffsetSphericalWedge(const FlatOffsetSphericalWedge&) = default;
     251           0 :   FlatOffsetSphericalWedge& operator=(const FlatOffsetSphericalWedge&) =
     252             :       default;
     253           0 :   FlatOffsetSphericalWedge& operator=(FlatOffsetSphericalWedge&&) = default;
     254             : 
     255             :   template <typename T>
     256           0 :   std::array<tt::remove_cvref_wrap_t<T>, 3> operator()(
     257             :       const std::array<T, 3>& source_coords) const;
     258             : 
     259             :   /// The inverse function is only callable with doubles because the inverse
     260             :   /// might fail if called for a point out of range, and it is unclear
     261             :   /// what should happen if the inverse were to succeed for some points in a
     262             :   /// DataVector but fail for other points.
     263           1 :   std::optional<std::array<double, 3>> inverse(
     264             :       const std::array<double, 3>& target_coords) const;
     265             : 
     266             :   template <typename T>
     267           0 :   tnsr::Ij<tt::remove_cvref_wrap_t<T>, 3, Frame::NoFrame> jacobian(
     268             :       const std::array<T, 3>& source_coords) const;
     269             : 
     270             :   template <typename T>
     271           0 :   tnsr::Ij<tt::remove_cvref_wrap_t<T>, 3, Frame::NoFrame> inv_jacobian(
     272             :       const std::array<T, 3>& source_coords) const;
     273             : 
     274             :   // clang-tidy: google runtime references
     275           0 :   void pup(PUP::er& p);  // NOLINT
     276             : 
     277           0 :   static bool is_identity() { return false; }
     278             : 
     279             :  private:
     280           0 :   friend bool operator==(const FlatOffsetSphericalWedge& lhs,
     281             :                          const FlatOffsetSphericalWedge& rhs);
     282           0 :   double lower_face_x_width_{std::numeric_limits<double>::signaling_NaN()};
     283           0 :   double inner_radius_{std::numeric_limits<double>::signaling_NaN()};
     284           0 :   double outer_radius_{std::numeric_limits<double>::signaling_NaN()};
     285             : };
     286             : 
     287           0 : bool operator!=(const FlatOffsetSphericalWedge& lhs,
     288             :                 const FlatOffsetSphericalWedge& rhs);
     289             : }  // namespace domain::CoordinateMaps

Generated by: LCOV version 1.14