Flattener.hpp
2 // See LICENSE.txt for details.
3
4 #pragma once
5
6 #include <cstddef>
7
9 #include "Utilities/Gsl.hpp"
10
11 /// \cond
12 class DataVector;
13 template <size_t>
14 class Mesh;
15
16 namespace EquationsOfState {
17 template <bool, size_t>
18 class EquationOfState;
19 } // namespace EquationsOfState
20 /// \endcond
21
22 namespace NewtonianEuler::Limiters {
23
24 /// \ingroup LimitersGroup
25 /// \brief Encodes the action taken by flatten_solution
26 enum class FlattenerAction {
27  NoOp = 0,
28  ScaledSolution = 1,
29  SetSolutionToMean = 2,
30 };
31
32 /// \ingroup LimitersGroup
33 /// \brief Scale a NewtonianEuler solution around its mean to remove pointwise
34 /// positivity violations.
35 ///
36 /// If the solution has points with negative density, scales the solution
37 /// to make these points positive again. For each component \f$u\f$ of the
38 /// solution, the scaling takes the form
39 /// \f$u \to \bar{u} + \theta (u - \bar{u})\f$,
40 /// where \f$\bar{u}\f$ is the cell-average value of \f$u\f$, and \f$\theta\f$
41 /// is a factor less than 1, chosen to restore positive density.
42 /// The cell averages in this implementation are computed in inertial
43 /// coordinates, so the flattener is conservative even on deformed grids.
44 ///
45 /// A scaling of this form used to restore positivity is usually called a
46 /// flattener (we use this name) or a bounds-preserving filter. Note that the
47 /// scaling approach only works if the cell-averaged solution is itself
48 /// physical, in other words, if the cell-averaged density is positive.
49 ///
50 /// After checking for (and correcting) negative densities, if the equation of
51 /// state is two-dimensional, then the pressure is also checked for positivity.
52 /// If negative pressures are found, each solution component is set to its mean
53 /// (this is equivalent to \f$\theta = 0\f$ in the scaling form above).
54 /// In principle, a less aggressive scaling could be used, but solving for the
55 /// correct \f$\theta\f$ in this case is more involved.
56 template <size_t VolumeDim, size_t ThermodynamicDim>
58  gsl::not_null<Scalar<DataVector>*> mass_density_cons,
59  gsl::not_null<tnsr::I<DataVector, VolumeDim>*> momentum_density,
60  gsl::not_null<Scalar<DataVector>*> energy_density,
61  const Mesh<VolumeDim>& mesh,
62  const Scalar<DataVector>& det_logical_to_inertial_jacobian,
64  equation_of_state) noexcept;
65
66 } // namespace NewtonianEuler::Limiters
EquationsOfState
Contains all equations of state, including base class.
Definition: DarkEnergyFluid.hpp:26
EquationsOfState::EquationOfState
Base class for equations of state depending on whether or not the system is relativistic,...
Definition: EquationOfState.hpp:63
NewtonianEuler::Limiters::FlattenerAction
FlattenerAction
Encodes the action taken by flatten_solution
Definition: Flattener.hpp:26
cstddef
DataVector
Stores a collection of function values.
Definition: DataVector.hpp:42
Mesh
Holds the number of grid points, basis, and quadrature in each direction of the computational grid.
Definition: Mesh.hpp:47
Scalar
Tensor< T, Symmetry<>, index_list<> > Scalar
Definition: TypeAliases.hpp:21
Gsl.hpp
TypeAliases.hpp
NewtonianEuler::Limiters::flatten_solution
FlattenerAction flatten_solution(gsl::not_null< Scalar< DataVector > * > mass_density_cons, gsl::not_null< tnsr::I< DataVector, VolumeDim > * > momentum_density, gsl::not_null< Scalar< DataVector > * > energy_density, const Mesh< VolumeDim > &mesh, const Scalar< DataVector > &det_logical_to_inertial_jacobian, const EquationsOfState::EquationOfState< false, ThermodynamicDim > &equation_of_state) noexcept
Scale a NewtonianEuler solution around its mean to remove pointwise positivity violations.
gsl::not_null
Require a pointer to not be a nullptr
Definition: Gsl.hpp:183