CovariantDerivOfExtrinsicCurvature.hpp
2 // See LICENSE.txt for details.
3
4 #pragma once
5
6 #include <cstddef>
7
8 #include "DataStructures/DataBox/Tag.hpp"
10 #include "Evolution/Systems/GeneralizedHarmonic/Tags.hpp"
11 #include "PointwiseFunctions/GeneralRelativity/Tags.hpp"
12 #include "Utilities/Gsl.hpp"
13 #include "Utilities/TMPL.hpp"
14
15 /// \cond
16 namespace gsl {
17 template <typename>
18 struct not_null;
19 } // namespace gsl
20 class DataVector;
21 /// \endcond
22
23 namespace GeneralizedHarmonic {
24 /*!
25  * \ingroup GeneralRelativityGroup
26  * \brief Computes the covariant derivative of extrinsic curvature from
27  * generalized harmonic variables and the spacetime normal vector.
28  *
29  * \details If \f$\Pi_{ab} \f$ and \f$\Phi_{iab} \f$ are the generalized
30  * harmonic conjugate momentum and spatial derivative variables, and if
31  * \f$n^a\f$ is the spacetime normal vector, then the extrinsic curvature
32  * can be written as
33  * \f{equation}\label{eq:kij}
34  * K_{ij} = \frac{1}{2} \Pi_{ij} + \Phi_{(ij)a} n^a,
35  * \f}
36  * and its covariant derivative as
37  * \f{equation}\label{eq:covkij}
38  * \nabla_k K_{ij} = \partial_k K_{ij} - \Gamma^l{}_{ik} K_{lj}
39  * - \Gamma^l{}_{jk} K_{li},
40  * \f}
41  * where \f$\Gamma^k{}_{ij}\f$ are Christoffel symbols of the second kind.
42  * The partial derivatives of extrinsic curvature can be computed as
43  * \f{equation}\label{eq:pdkij}
44  * \partial_k K_{ij} =
45  * \frac{1}{2}\left(\partial_k \Pi_{ij} +
46  * \left(\partial_k \Phi_{ija} +
47  * \partial_k \Phi_{jia}\right) n^a +
48  * \left(\Phi_{ija} + \Phi_{jia}\right) \partial_k n^a
49  * \right),
50  * \f}
51  * where we have access to all terms except the spatial derivatives of the
52  * spacetime unit normal vector \f$\partial_k n^a\f$. Given that
53  * \f$n^a=(1/\alpha, -\beta^i /\alpha)\f$, the temporal portion of
54  * \f$\partial_k n^a\f$ can be computed as:
55  * \f{align}
56  * \partial_k n^0 =& -\frac{1}{\alpha^2} \partial_k \alpha, \nonumber \\
57  * =& -\frac{1}{\alpha^2} (-\alpha/2) n^a \Phi_{kab} n^b,
58  * \nonumber \\
59  * =& \frac{1}{2\alpha} n^a \Phi_{kab} n^b, \nonumber \\
60  * =& \frac{1}{2} n^0 n^a \Phi_{kab} n^b, \nonumber \\
61  * =& -\left(g^{0a} +
62  * \frac{1}{2}n^0 n^a\right) \Phi_{kab} n^b,
63  * \f}
64  * where we use the expression for \f$\partial_k \alpha\f$ from
65  * \ref spatial_deriv_of_lapse; while the spatial portion of the same can be
66  * computed as:
67  * \f{align}
68  * \partial_k n^i =& -\partial_k (\beta^i/\alpha)
69  * = -\frac{1}{\alpha}\partial_k \beta^i
70  * + \frac{\beta^i}{\alpha^2}\partial_k \alpha ,\nonumber \\
71  * =& -\frac{1}{2}\frac{\beta^i}{\alpha} n^a\Phi_{kab}n^b
72  * -\left(g^{ia}
73  * + n^i n^a\right) \Phi_{kab} n^b, \nonumber\\
74  * =& -\left(g^{ia} + \frac{1}{2}n^i n^a\right) \Phi_{kab}n^b,
75  * \f}
76  * where we use the expression for \f$\partial_k \beta^i\f$ from
77  * \ref spatial_deriv_of_shift. Combining the last two equations, we find that
78  * \f{equation}
79  * \partial_k n^a = -\left(g^{ab} + \frac{1}{2}n^a n^b\right)\Phi_{kbc}n^c,
80  * \f}
81  * and using Eq.(\f$\ref{eq:covkij}\f$) and Eq.(\f$\ref{eq:pdkij}\f$) with this,
82  * we can compute the covariant derivative of the extrinsic curvature as:
83  * \f{equation}
84  * \nabla_k K_{ij} =
85  * \frac{1}{2}\left(\partial_k \Pi_{ij} +
86  * \left(\partial_k \Phi_{ija} +
87  * \partial_k \Phi_{jia}\right) n^a -
88  * \left(\Phi_{ija} + \Phi_{jia}\right)
89  * \left(g^{ab} + \frac{1}{2}n^a n^b\right)
90  * \Phi_{kbc}n^c
91  * \right) - \Gamma^l{}_{ik} K_{lj} - \Gamma^l{}_{jk} K_{li} \f}.
92  */
93 template <size_t SpatialDim, typename Frame, typename DataType>
94 tnsr::ijj<DataType, SpatialDim, Frame> covariant_deriv_of_extrinsic_curvature(
95  const tnsr::ii<DataType, SpatialDim, Frame>& extrinsic_curvature,
96  const tnsr::A<DataType, SpatialDim, Frame>& spacetime_unit_normal_vector,
97  const tnsr::Ijj<DataType, SpatialDim, Frame>&
98  spatial_christoffel_second_kind,
99  const tnsr::AA<DataType, SpatialDim, Frame>& inverse_spacetime_metric,
100  const tnsr::iaa<DataType, SpatialDim, Frame>& phi,
101  const tnsr::iaa<DataType, SpatialDim, Frame>& d_pi,
102  const tnsr::ijaa<DataType, SpatialDim, Frame>& d_phi) noexcept;
103
104 template <size_t SpatialDim, typename Frame, typename DataType>
106  gsl::not_null<tnsr::ijj<DataType, SpatialDim, Frame>*>
107  d_extrinsic_curvature,
108  const tnsr::ii<DataType, SpatialDim, Frame>& extrinsic_curvature,
109  const tnsr::A<DataType, SpatialDim, Frame>& spacetime_unit_normal_vector,
110  const tnsr::Ijj<DataType, SpatialDim, Frame>&
111  spatial_christoffel_second_kind,
112  const tnsr::AA<DataType, SpatialDim, Frame>& inverse_spacetime_metric,
113  const tnsr::iaa<DataType, SpatialDim, Frame>& phi,
114  const tnsr::iaa<DataType, SpatialDim, Frame>& d_pi,
115  const tnsr::ijaa<DataType, SpatialDim, Frame>& d_phi) noexcept;
116 } // namespace GeneralizedHarmonic
GeneralizedHarmonic
Items related to evolving the first-order generalized harmonic system.
Definition: BoundaryCondition.hpp:20
GeneralizedHarmonic::covariant_deriv_of_extrinsic_curvature
tnsr::ijj< DataType, SpatialDim, Frame > covariant_deriv_of_extrinsic_curvature(const tnsr::ii< DataType, SpatialDim, Frame > &extrinsic_curvature, const tnsr::A< DataType, SpatialDim, Frame > &spacetime_unit_normal_vector, const tnsr::Ijj< DataType, SpatialDim, Frame > &spatial_christoffel_second_kind, const tnsr::AA< DataType, SpatialDim, Frame > &inverse_spacetime_metric, const tnsr::iaa< DataType, SpatialDim, Frame > &phi, const tnsr::iaa< DataType, SpatialDim, Frame > &d_pi, const tnsr::ijaa< DataType, SpatialDim, Frame > &d_phi) noexcept
Computes the covariant derivative of extrinsic curvature from generalized harmonic variables and the ...
GeneralizedHarmonic::extrinsic_curvature
void extrinsic_curvature(gsl::not_null< tnsr::ii< DataType, SpatialDim, Frame > * > ex_curv, const tnsr::A< DataType, SpatialDim, Frame > &spacetime_normal_vector, const tnsr::aa< DataType, SpatialDim, Frame > &pi, const tnsr::iaa< DataType, SpatialDim, Frame > &phi) noexcept
Computes extrinsic curvature from generalized harmonic variables and the spacetime normal vector.
cstddef
DataVector
Stores a collection of function values.
Definition: DataVector.hpp:46
GeneralizedHarmonic::phi
void phi(gsl::not_null< tnsr::iaa< DataType, SpatialDim, Frame > * > phi, const Scalar< DataType > &lapse, const tnsr::i< DataType, SpatialDim, Frame > &deriv_lapse, const tnsr::I< DataType, SpatialDim, Frame > &shift, const tnsr::iJ< DataType, SpatialDim, Frame > &deriv_shift, const tnsr::ii< DataType, SpatialDim, Frame > &spatial_metric, const tnsr::ijj< DataType, SpatialDim, Frame > &deriv_spatial_metric) noexcept
Computes the auxiliary variable used by the generalized harmonic formulation of Einstein's equations...
Gsl.hpp
Tensor.hpp
gsl
Implementations from the Guideline Support Library.