BjorhusImpl.hpp
1 // Distributed under the MIT License.
2 // See LICENSE.txt for details.
3 
4 #pragma once
5 
6 #include <array>
7 #include <cstddef>
8 
10 #include "Utilities/ContainerHelpers.hpp"
11 
12 /// \cond
13 class DataVector;
14 namespace gsl {
15 template <class T>
16 class not_null;
17 } // namespace gsl
18 /// \endcond
19 
21 /// \brief Detailed implementation of Bjorhus-type boundary corrections
22 namespace Bjorhus {
23 /*!
24  * \brief Computes the expression needed to set boundary conditions on the time
25  * derivative of the characteristic field \f$v^{\psi}_{ab}\f$
26  *
27  * \details In the Bjorhus scheme, the time derivatives of evolved variables are
28  * characteristic projected. A constraint-preserving correction term is added
29  * here to the resulting characteristic (time-derivative) field:
30  *
31  * \f{align}
32  * \Delta \partial_t v^{\psi}_{ab} = \lambda_{\psi} n^i C_{iab}
33  * \f}
34  *
35  * where \f$n^i\f$ is the local unit normal to the external boundary,
36  * \f$C_{iab} = \partial_i \psi_{ab} - \Phi_{iab}\f$ is the three-index
37  * constraint, and \f$\lambda_{\psi}\f$ is the characteristic speed of the field
38  * \f$v^{\psi}_{ab}\f$.
39  */
40 template <size_t VolumeDim, typename DataType>
42  gsl::not_null<tnsr::aa<DataType, VolumeDim, Frame::Inertial>*> bc_dt_v_psi,
43  const tnsr::I<DataType, VolumeDim, Frame::Inertial>&
44  unit_interface_normal_vector,
45  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>&
47  const std::array<DataType, 4>& char_speeds) noexcept;
48 
49 /*!
50  * \brief Computes the expression needed to set boundary conditions on the time
51  * derivative of the characteristic field \f$v^{0}_{iab}\f$
52  *
53  * \details In the Bjorhus scheme, the time derivatives of evolved variables are
54  * characteristic projected. A constraint-preserving correction term is added
55  * here to the resulting characteristic (time-derivative) field \f$v^0_{iab}\f$:
56  *
57  * \f{align}
58  * \Delta \partial_t v^{0}_{iab} = \lambda_{0} n^j C_{jiab}
59  * \f}
60  *
61  * where \f$n^i\f$ is the local unit normal to the external boundary,
62  * \f$C_{ijab} = \partial_i\Phi_{jab} - \partial_j\Phi_{iab}\f$ is the
63  * four-index constraint, and \f$\lambda_{0}\f$ is the characteristic speed of
64  * the field \f$v^0_{iab}\f$.
65  *
66  * \note In 3D, only the non-zero and unique components of the four-index
67  * constraint are stored, as \f$\hat{C}_{iab} = \epsilon_i^{jk} C_{jkab}\f$. In
68  * 2D the input expected here is \f$\hat{C}_{0ab} = C_{01ab}, \hat{C}_{1ab} =
69  * C_{10ab}\f$, and in 1D \f$\hat{C}_{0ab} = 0\f$.
70  */
71 template <size_t VolumeDim, typename DataType>
73  gsl::not_null<tnsr::iaa<DataType, VolumeDim, Frame::Inertial>*>
74  bc_dt_v_zero,
75  const tnsr::I<DataType, VolumeDim, Frame::Inertial>&
76  unit_interface_normal_vector,
77  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>&
79  const std::array<DataType, 4>& char_speeds) noexcept;
80 
81 /// @{
82 /*!
83  * \brief Computes the expression needed to set boundary conditions on the time
84  * derivative of the characteristic field \f$v^{-}_{ab}\f$
85  *
86  * \details In the Bjorhus scheme, the time derivatives of evolved variables are
87  * characteristic projected. Constraint-preserving correction terms
88  * \f$T^{\mathrm C}_{ab}\f$, Sommerfeld condition terms for gauge degrees of
89  * freedom \f$T^{\mathrm G}_{ab}\f$, and terms constraining physical degrees of
90  * freedom \f$T^{\mathrm P}_{ab}\f$ are added here to the resulting
91  * characteristic (time-derivative) field:
92  *
93  * \f{align}
94  * \Delta \partial_t v^{-}_{ab} = T^{\mathrm C}_{ab} + T^{\mathrm G}_{ab}
95  * + T^{\mathrm P}_{ab}.
96  * \f}
97  *
98  * These terms are given by Eq. (64) of \cite Lindblom2005qh :
99  *
100  * \f{eqnarray}
101  * T^{\mathrm C}_{ab} &=& \frac{1}{2}
102  * \left(2 k^c k^d l_a l_b - k^c l_b P^d_a - k^c l_a P^d_b - k^d l_b P^c_a
103  * - k^d l_a P^c_b + P^{cd} P_{ab}\right) \partial_t v^{-}_{cd}\\
104  * &&+ \frac{1}{\sqrt{2}} \lambda_{-}c^{\hat{0}-}_c \left(l_a l_b k^c +
105  * P_{ab} l^c - P^c_b l_a - P^c_a l_b \right) \nonumber
106  * \f}
107  *
108  * where \f$l^a (l_a)\f$ is the outgoing null vector (one-form), \f$k^a (k_a)\f$
109  * is the incoming null vector (one-form), \f$P_{ab}, P^{ab}, P^a_b\f$ are
110  * spacetime projection operators defined in `transverse_projection_operator()`,
111  * \f$\partial_t v^{-}_{ab}\f$ is the characteristic projected time derivative
112  * of evolved variables (corresponding to the \f$v^{-}\f$ field), and
113  * \f$c^{\hat{0}\pm}_a\f$ are characteristic modes of the constraint evolution
114  * system:
115  *
116  * \f{align}\nonumber
117  * c^{\hat{0}\pm}_a = F_a \mp n^k C_{ka},
118  * \f}
119  *
120  * where \f$F_a\f$ is the generalized-harmonic (GH) F constraint [Eq. (43) of
121  * \cite Lindblom2005qh], \f$C_{ka}\f$ is the GH 2-index constraint [Eq. (44)
122  * of \cite Lindblom2005qh], and \f$n^k\f$ is the unit spatial normal to the
123  * outer boundary. Boundary correction terms that prevent strong reflections of
124  * gauge perturbations are given by Eq. (25) of \cite Rinne2007ui :
125  *
126  * \f{align}
127  * T^{\mathrm G}_{ab} =
128  * \left(k_a P^c_b l^d + k_b P^c_a l^d -
129  * \left(k_a l_b k^c l^d + k_b l_a k_c l^d + k_a k_b l^c l^d
130  * \right) \right) \left(\gamma_2 - \frac{1}{r}
131  * \right) \partial_t v^{\psi}_{cd}
132  * \f}
133  *
134  * where \f$r\f$ is the radial coordinate at the outer boundary, which is
135  * assumed to be spherical, \f$\gamma_2\f$ is a GH constraint damping parameter,
136  * and \f$\partial_t v^{\psi}_{ab}\f$ is the characteristic projected time
137  * derivative of evolved variables (corresponding to the \f$v^{\psi}\f$ field).
138  * Finally, we constrain physical degrees of freedom using corrections from
139  * Eq. (68) of \cite Lindblom2005qh :
140  *
141  * \f{align}
142  * T^{\mathrm P}_{ab} = \left( P^c_a P^d_b - \frac{1}{2} P_{ab} P^{cd} \right)
143  * \left(\partial_t v^{-}_{cd} + \lambda_{-}
144  * \left(U^{3-}_{cd} - \gamma_2 n^i C_{icd}\right)\right),
145  * \f}
146  *
147  * where \f$C_{icd}\f$ is the GH 3-index constraint [c.f. Eq. (26) of
148  * \cite Lindblom2005qh, see also `three_index_constraint()`], and
149  *
150  * \f{align}\nonumber
151  * U^{3-}_{ab} = 2 P^i_a P^j_b U^{8-}_{ij}
152  * \f}
153  *
154  * is the inward propagating characteristic mode of the Weyl tensor evolution
155  * \f$U^{8-}_{ab}\f$ [c.f. Eq. 75 of \cite Kidder2004rw ] projected onto the
156  * outer boundary using the spatial-spacetime projection operators \f$P^i_a\f$.
157  * Note that (A) the covariant derivative of extrinsic curvature needed to
158  * get the Weyl propagating modes is calculated substituting the evolved
159  * variable \f$\Phi_{iab}\f$ for spatial derivatives of the spacetime metric;
160  * and (B) the spatial Ricci tensor used in the same calculation is also
161  * calculated using the same substituion, and also includes corrections
162  * proportional to the GH 4-index constraint \f$C_{ijab}\f$ [c.f. Eq. (45) of
163  * \cite Lindblom2005qh , see also `four_index_constraint()`]:
164  *
165  * \f{align}\nonumber
166  * R_{ij} \rightarrow R_{ij} + C_{(iklj)} + \frac{1}{2} n^k q^a C_{(ikj)a},
167  * \f}
168  *
169  * where \f$q^a\f$ is the future-directed spacetime normal vector.
170  */
171 template <size_t VolumeDim, typename DataType>
173  gsl::not_null<tnsr::aa<DataType, VolumeDim, Frame::Inertial>*>
174  bc_dt_v_minus,
175  const Scalar<DataType>& gamma2,
176  const tnsr::I<DataType, VolumeDim, Frame::Inertial>& inertial_coords,
177  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& incoming_null_one_form,
178  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& outgoing_null_one_form,
179  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& incoming_null_vector,
180  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& outgoing_null_vector,
181  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>& projection_ab,
182  const tnsr::Ab<DataType, VolumeDim, Frame::Inertial>& projection_Ab,
183  const tnsr::AA<DataType, VolumeDim, Frame::Inertial>& projection_AB,
184  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
185  char_projected_rhs_dt_v_psi,
186  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
187  char_projected_rhs_dt_v_minus,
188  const tnsr::a<DataType, VolumeDim, Frame::Inertial>&
189  constraint_char_zero_plus,
190  const tnsr::a<DataType, VolumeDim, Frame::Inertial>&
191  constraint_char_zero_minus,
192  const std::array<DataType, 4>& char_speeds) noexcept;
193 
194 template <size_t VolumeDim, typename DataType>
196  gsl::not_null<tnsr::aa<DataType, VolumeDim, Frame::Inertial>*>
197  bc_dt_v_minus,
198  const Scalar<DataType>& gamma2,
199  const tnsr::I<DataType, VolumeDim, Frame::Inertial>& inertial_coords,
200  const tnsr::i<DataType, VolumeDim, Frame::Inertial>&
201  unit_interface_normal_one_form,
202  const tnsr::I<DataType, VolumeDim, Frame::Inertial>&
203  unit_interface_normal_vector,
204  const tnsr::A<DataType, VolumeDim, Frame::Inertial>&
205  spacetime_unit_normal_vector,
206  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& incoming_null_one_form,
207  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& outgoing_null_one_form,
208  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& incoming_null_vector,
209  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& outgoing_null_vector,
210  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>& projection_ab,
211  const tnsr::Ab<DataType, VolumeDim, Frame::Inertial>& projection_Ab,
212  const tnsr::AA<DataType, VolumeDim, Frame::Inertial>& projection_AB,
213  const tnsr::II<DataType, VolumeDim, Frame::Inertial>&
214  inverse_spatial_metric,
215  const tnsr::ii<DataType, VolumeDim, Frame::Inertial>& extrinsic_curvature,
216  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>& spacetime_metric,
217  const tnsr::AA<DataType, VolumeDim, Frame::Inertial>&
219  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>&
221  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
222  char_projected_rhs_dt_v_psi,
223  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
224  char_projected_rhs_dt_v_minus,
225  const tnsr::a<DataType, VolumeDim, Frame::Inertial>&
226  constraint_char_zero_plus,
227  const tnsr::a<DataType, VolumeDim, Frame::Inertial>&
228  constraint_char_zero_minus,
229  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>& phi,
230  const tnsr::ijaa<DataType, VolumeDim, Frame::Inertial>& d_phi,
231  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>& d_pi,
232  const std::array<DataType, 4>& char_speeds) noexcept;
233 /// @}
234 
235 namespace detail {
236 template <size_t VolumeDim, typename DataType>
237 void add_gauge_sommerfeld_terms_to_dt_v_minus(
238  const gsl::not_null<tnsr::aa<DataType, VolumeDim, Frame::Inertial>*>
239  bc_dt_v_minus,
240  const Scalar<DataType>& gamma2,
241  const tnsr::I<DataType, VolumeDim, Frame::Inertial>& inertial_coords,
242  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& incoming_null_one_form,
243  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& outgoing_null_one_form,
244  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& incoming_null_vector,
245  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& outgoing_null_vector,
246  const tnsr::Ab<DataType, VolumeDim, Frame::Inertial>& projection_Ab,
247  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
248  char_projected_rhs_dt_v_psi) noexcept;
249 
250 template <size_t VolumeDim, typename DataType>
251 void add_constraint_dependent_terms_to_dt_v_minus(
252  const gsl::not_null<tnsr::aa<DataType, VolumeDim, Frame::Inertial>*>
253  bc_dt_v_minus,
254  const tnsr::a<DataType, VolumeDim, Frame::Inertial>& outgoing_null_one_form,
255  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& incoming_null_vector,
256  const tnsr::A<DataType, VolumeDim, Frame::Inertial>& outgoing_null_vector,
257  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>& projection_ab,
258  const tnsr::Ab<DataType, VolumeDim, Frame::Inertial>& projection_Ab,
259  const tnsr::AA<DataType, VolumeDim, Frame::Inertial>& projection_AB,
260  const tnsr::a<DataType, VolumeDim, Frame::Inertial>&
261  constraint_char_zero_plus,
262  const tnsr::a<DataType, VolumeDim, Frame::Inertial>&
263  constraint_char_zero_minus,
264  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
265  char_projected_rhs_dt_v_minus,
266  const std::array<DataType, 4>& char_speeds) noexcept;
267 
268 template <size_t VolumeDim, typename DataType>
269 void add_physical_terms_to_dt_v_minus(
270  const gsl::not_null<tnsr::aa<DataType, VolumeDim, Frame::Inertial>*>
271  bc_dt_v_minus,
272  const Scalar<DataType>& gamma2,
273  const tnsr::i<DataType, VolumeDim, Frame::Inertial>&
274  unit_interface_normal_one_form,
275  const tnsr::I<DataType, VolumeDim, Frame::Inertial>&
276  unit_interface_normal_vector,
277  const tnsr::A<DataType, VolumeDim, Frame::Inertial>&
278  spacetime_unit_normal_vector,
279  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>& projection_ab,
280  const tnsr::Ab<DataType, VolumeDim, Frame::Inertial>& projection_Ab,
281  const tnsr::AA<DataType, VolumeDim, Frame::Inertial>& projection_AB,
282  const tnsr::II<DataType, VolumeDim, Frame::Inertial>&
283  inverse_spatial_metric,
284  const tnsr::ii<DataType, VolumeDim, Frame::Inertial>& extrinsic_curvature,
285  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>& spacetime_metric,
286  const tnsr::AA<DataType, VolumeDim, Frame::Inertial>&
288  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>&
290  const tnsr::aa<DataType, VolumeDim, Frame::Inertial>&
291  char_projected_rhs_dt_v_minus,
292  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>& phi,
293  const tnsr::ijaa<DataType, VolumeDim, Frame::Inertial>& d_phi,
294  const tnsr::iaa<DataType, VolumeDim, Frame::Inertial>& d_pi,
295  const std::array<DataType, 4>& char_speeds) noexcept;
296 } // namespace detail
297 } // namespace Bjorhus
298 } // namespace GeneralizedHarmonic::BoundaryConditions
GeneralizedHarmonic::three_index_constraint
tnsr::iaa< DataType, SpatialDim, Frame > three_index_constraint(const tnsr::iaa< DataType, SpatialDim, Frame > &d_spacetime_metric, const tnsr::iaa< DataType, SpatialDim, Frame > &phi) noexcept
Computes the generalized-harmonic 3-index constraint.
GeneralizedHarmonic::BoundaryConditions::Bjorhus::constraint_preserving_bjorhus_corrections_dt_v_psi
void constraint_preserving_bjorhus_corrections_dt_v_psi(gsl::not_null< tnsr::aa< DataType, VolumeDim, Frame::Inertial > * > bc_dt_v_psi, const tnsr::I< DataType, VolumeDim, Frame::Inertial > &unit_interface_normal_vector, const tnsr::iaa< DataType, VolumeDim, Frame::Inertial > &three_index_constraint, const std::array< DataType, 4 > &char_speeds) noexcept
Computes the expression needed to set boundary conditions on the time derivative of the characteristi...
GeneralizedHarmonic::four_index_constraint
tnsr::iaa< DataType, SpatialDim, Frame > four_index_constraint(const tnsr::ijaa< DataType, SpatialDim, Frame > &d_phi) noexcept
Computes the generalized-harmonic 4-index constraint.
GeneralizedHarmonic::BoundaryConditions
Boundary conditions for the generalized harmonic system.
Definition: BjorhusImpl.hpp:20
GeneralizedHarmonic::BoundaryConditions::Bjorhus::constraint_preserving_bjorhus_corrections_dt_v_zero
void constraint_preserving_bjorhus_corrections_dt_v_zero(gsl::not_null< tnsr::iaa< DataType, VolumeDim, Frame::Inertial > * > bc_dt_v_zero, const tnsr::I< DataType, VolumeDim, Frame::Inertial > &unit_interface_normal_vector, const tnsr::iaa< DataType, VolumeDim, Frame::Inertial > &four_index_constraint, const std::array< DataType, 4 > &char_speeds) noexcept
Computes the expression needed to set boundary conditions on the time derivative of the characteristi...
GeneralizedHarmonic::extrinsic_curvature
void extrinsic_curvature(gsl::not_null< tnsr::ii< DataType, SpatialDim, Frame > * > ex_curv, const tnsr::A< DataType, SpatialDim, Frame > &spacetime_normal_vector, const tnsr::aa< DataType, SpatialDim, Frame > &pi, const tnsr::iaa< DataType, SpatialDim, Frame > &phi) noexcept
Computes extrinsic curvature from generalized harmonic variables and the spacetime normal vector.
cstddef
GeneralizedHarmonic::BoundaryConditions::Bjorhus::constraint_preserving_physical_bjorhus_corrections_dt_v_minus
void constraint_preserving_physical_bjorhus_corrections_dt_v_minus(gsl::not_null< tnsr::aa< DataType, VolumeDim, Frame::Inertial > * > bc_dt_v_minus, const Scalar< DataType > &gamma2, const tnsr::I< DataType, VolumeDim, Frame::Inertial > &inertial_coords, const tnsr::i< DataType, VolumeDim, Frame::Inertial > &unit_interface_normal_one_form, const tnsr::I< DataType, VolumeDim, Frame::Inertial > &unit_interface_normal_vector, const tnsr::A< DataType, VolumeDim, Frame::Inertial > &spacetime_unit_normal_vector, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &incoming_null_one_form, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &outgoing_null_one_form, const tnsr::A< DataType, VolumeDim, Frame::Inertial > &incoming_null_vector, const tnsr::A< DataType, VolumeDim, Frame::Inertial > &outgoing_null_vector, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &projection_ab, const tnsr::Ab< DataType, VolumeDim, Frame::Inertial > &projection_Ab, const tnsr::AA< DataType, VolumeDim, Frame::Inertial > &projection_AB, const tnsr::II< DataType, VolumeDim, Frame::Inertial > &inverse_spatial_metric, const tnsr::ii< DataType, VolumeDim, Frame::Inertial > &extrinsic_curvature, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &spacetime_metric, const tnsr::AA< DataType, VolumeDim, Frame::Inertial > &inverse_spacetime_metric, const tnsr::iaa< DataType, VolumeDim, Frame::Inertial > &three_index_constraint, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &char_projected_rhs_dt_v_psi, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &char_projected_rhs_dt_v_minus, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &constraint_char_zero_plus, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &constraint_char_zero_minus, const tnsr::iaa< DataType, VolumeDim, Frame::Inertial > &phi, const tnsr::ijaa< DataType, VolumeDim, Frame::Inertial > &d_phi, const tnsr::iaa< DataType, VolumeDim, Frame::Inertial > &d_pi, const std::array< DataType, 4 > &char_speeds) noexcept
Computes the expression needed to set boundary conditions on the time derivative of the characteristi...
array
DataVector
Stores a collection of function values.
Definition: DataVector.hpp:46
GeneralizedHarmonic::phi
void phi(gsl::not_null< tnsr::iaa< DataType, SpatialDim, Frame > * > phi, const Scalar< DataType > &lapse, const tnsr::i< DataType, SpatialDim, Frame > &deriv_lapse, const tnsr::I< DataType, SpatialDim, Frame > &shift, const tnsr::iJ< DataType, SpatialDim, Frame > &deriv_shift, const tnsr::ii< DataType, SpatialDim, Frame > &spatial_metric, const tnsr::ijj< DataType, SpatialDim, Frame > &deriv_spatial_metric) noexcept
Computes the auxiliary variable used by the generalized harmonic formulation of Einstein's equations...
Scalar
Tensor< T, Symmetry<>, index_list<> > Scalar
Definition: TypeAliases.hpp:21
TypeAliases.hpp
gr::spacetime_metric
void spacetime_metric(gsl::not_null< tnsr::aa< DataType, Dim, Frame > * > spacetime_metric, const Scalar< DataType > &lapse, const tnsr::I< DataType, Dim, Frame > &shift, const tnsr::ii< DataType, Dim, Frame > &spatial_metric) noexcept
Computes the spacetime metric from the spatial metric, lapse, and shift.
GeneralizedHarmonic::BoundaryConditions::Bjorhus::constraint_preserving_bjorhus_corrections_dt_v_minus
void constraint_preserving_bjorhus_corrections_dt_v_minus(gsl::not_null< tnsr::aa< DataType, VolumeDim, Frame::Inertial > * > bc_dt_v_minus, const Scalar< DataType > &gamma2, const tnsr::I< DataType, VolumeDim, Frame::Inertial > &inertial_coords, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &incoming_null_one_form, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &outgoing_null_one_form, const tnsr::A< DataType, VolumeDim, Frame::Inertial > &incoming_null_vector, const tnsr::A< DataType, VolumeDim, Frame::Inertial > &outgoing_null_vector, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &projection_ab, const tnsr::Ab< DataType, VolumeDim, Frame::Inertial > &projection_Ab, const tnsr::AA< DataType, VolumeDim, Frame::Inertial > &projection_AB, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &char_projected_rhs_dt_v_psi, const tnsr::aa< DataType, VolumeDim, Frame::Inertial > &char_projected_rhs_dt_v_minus, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &constraint_char_zero_plus, const tnsr::a< DataType, VolumeDim, Frame::Inertial > &constraint_char_zero_minus, const std::array< DataType, 4 > &char_speeds) noexcept
Computes the expression needed to set boundary conditions on the time derivative of the characteristi...
gsl
Implementations from the Guideline Support Library.
Definition: ReadSpecPiecewisePolynomial.hpp:11
gr::inverse_spacetime_metric
void inverse_spacetime_metric(gsl::not_null< tnsr::AA< DataType, SpatialDim, Frame > * > inverse_spacetime_metric, const Scalar< DataType > &lapse, const tnsr::I< DataType, SpatialDim, Frame > &shift, const tnsr::II< DataType, SpatialDim, Frame > &inverse_spatial_metric) noexcept
Compute inverse spacetime metric from inverse spatial metric, lapse and shift.
gsl::not_null
Require a pointer to not be a nullptr
Definition: ReadSpecPiecewisePolynomial.hpp:13